Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [177]

Шрифт
Интервал

Предельную точность, нам доступную, можно найти из соотношения λ = h/mv. Из общей теории распространения волн следует, что если волна проходит через отверстие диаметром, равным λ, или меньше, то она при этом полностью расходится во все стороны; волна же, прошедшая через отверстие диаметром несколько десятков длин волн или еще больше, проходит практически не расходясь (см. гл. 10). Если зафиксировать положение движущейся частицы у стенки с точностью до нескольких длин волн λ, то при этом есть риск сообщить ей в поперечном направлении импульс, составляющий большую, но неизвестную часть от его первоначального, направленного вдоль его движения импульса mv. Если же достаточно знать положение частицы грубо, с точностью до нескольких десятков длин волн λ, то за счет такой жертвы ее конечный импульс будет известен с точностью до величины, составляющей малую часть начального импульса.




Фиг. 210.


Приводимая ниже таблица содержит утверждения, выглядящие более строгими, чем они есть на самом деле, однако в ней приведены результаты полного исследования с учетом детальной геометрии волн.



Это грубые утверждения относительно точности нашего знания. Однако детальное рассмотрение приводит к тому же самому выводу: в каждом случае произведение неопределенностей равно λ∙mv, т. е. (h/mv)∙(mv) = h.

(НЕОПРЕДЕЛЕННОСТЬ КООРДИНАТЫ Δx)∙(НЕОПРЕДЕЛЕННОСТЬ ИМПУЛЬСА Δ(mv)) ~= (КВАНТОВАЯ ПОСТОЯННАЯ h)

Эти неопределенности отвечают разным измерениям: неопределенность одного измерения приводит к появлению неопределенности в другом. Чем точнее производится одно измерение, тем с меньшей точностью можно предсказать результат другого измерения. Неопределенность возникает не вследствие плохой аппаратуры: она лежит в самой природе. Процесс измерения одной величины обязательно ухудшает возможности точного измерения другой. Так как каждая из этих неопределенностей отражает неточность нашего знания, то последнее обязательно в какой-то степени является неточным. Поэтому не следует говорить, что произведение (Δx)∙(Δmv) точно равно h, скорее следует говорить, что оно примерно равно h или «порядка h».

Это и есть принцип неопределенности Гейзенберга. Он сыграл исключительно важную роль при построении математического аппарата для описания волн-частиц в атомах. Его строгое толкование в опытах с электронами таково: подобно световым волнам электроны сопротивляются любым попыткам выполнить измерения с предельной точностью. Этот принцип меняет и картину атома Бора. Можно определить точно импульс электрона (а следовательно, и его уровень энергии) на какой-нибудь его орбите, но при этом его местонахождение будет абсолютно неизвестно: ничего нельзя сказать о том, где он находится. Отсюда ясно, что рисовать себе четкую орбиту электрона и помечать его на ней в виде кружочка лишено какого-либо смысла.

Еще более кардинальные изменения вносит принцип неопределенности в философское мировоззрение. Нельзя получить знание с предельной точностью, которую мы желаем, причем дело тут вовсе не в разуме, терпении, технике или деньгах. Мысленно можно построить сверхмикроскоп для наблюдения электрона. Будет ли тогда уверенность, что координаты и импульс электрона одновременно измеримы? Нет. В любом таком микроскопе для наблюдения должен использоваться тот или иной «свет». Вообще, чтобы «увидеть» электрон, в таком сверхмикроскопе на электроне должен рассеяться хотя бы один квант «света». Такое столкновение приводило бы к изменению движения электрона, вызывая непредсказуемое изменение его импульса (комптон-эффект). И для того, чтобы точно определить местоположение электрона, «свет» должен быть исключительно короткой длины волны, иначе его дифракционное изображение размоется. Поэтому этот квант должен быть исключительно коротковолновым, крайне высокочастотным: это должен быть гигантский квант, фотон γ-лучей. Но в таком случае столкновение будет сильным и импульс отдачи электрона окажется весьма неопределенным. Подробные вычисления на основе соответствующих выражений для импульса отдачи в комптон-эффекте и теории дифракции света в микроскопе дают (Δx)∙(Δmv) ~= h

Подобным же образом этот объективно существующий закон неопределенности работает в случае энергии и времени. Нельзя абсолютно точно измерить кинетическую энергию частицы за бесконечно малый отрезок времени. Неопределенность нашего знания энергии ΔЕ и интервала времени ее измерения Δt связаны следующим образом:

ΔЕΔt ~ h[205]

Во всех приведенных выше соотношениях неопределенностей даже знак ж является слишком точным. Следует говорить (Δx)∙(Δmv) ~ h (примерно такой же величины, как h). Но даже в такой формулировке это лучшее, на что можно надеяться. Поэтому следует говорить «примерно такой же величины, как… или больше[206]».

Этот малый квант действия h играет роль как бы площади дыр в той частой сети, с помощью которой мы желаем выловить информацию в природе. «Клетка точности» вокруг какого-либо куска информации, который мы хотим поймать, должна иметь площадь большую, чем h, иначе улова не будет. Пытаясь поймать какую-нибудь подробную информацию, можно растянуть нашу сеть в каком-нибудь одном аспекте и сузить ее дыры, однако при этом дыры станут длиннее в другом отношении. Подробность, если можно так выразиться, узкая в «ширину», должна быть достаточно велика в «длину», иначе она ускользнет через дыры. Нельзя измерить точно и одновременно величину импульса и координаты: можно только точно измерить одну из них, однако за счет ухудшения знания о другой.


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.