Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [173]

Шрифт
Интервал

Рентгеновские лучи также выбивают фотоэлектроны, полностью передавая им свою энергию, а когда они рассеиваются на атомах, каждый квант отскакивает от некоторого электрона и точно так же, как это сделал бы снаряд, передает ему малый импульс отдачи (эффект Комптона, фиг. 188). Но при рассеянии рентгеновских лучей на кристаллической решетке, образованной слоями атомов, получается гладкая, коллективная картина интерференции; подобно световым волнам, у них также проявляется поляризация. Так что теперь мы описываем свет, рентгеновские лучи и т. п. как фотоны, снаряды энергии и импульса, ведомые вдоль своих траекторий волной; отчасти это соответствует давнишнему предположению Ньютона.

Де-Бройль сделал свое «возмутительное» предположение: припишем реальным снарядам (частицам) такие же волновые свойства. Если наделить каждую частицу вещества сопровождающей ее волной с неизвестной фазой, некоторой длиной волны и скоростью перемещения, то это позволит электрону, атому, любому движущемуся объекту образовывать интерференционную картину! Тогда мы должны сказать, что в некоторых отношениях электрон ведет себя как волна (ЯВЛЯЕТСЯ волной). В других случаях он ведет себя как частица (ЯВЛЯЕТСЯ частицей). Когда де-Бройль написал свое предположение в виде короткого поразительного письма в общедоступный научный журнал, многим казалось, что он почти сумасшедший. Со временем это принесло ему Нобелевскую премию.

Ниже приведен его рецепт рассмотрения, основанный на том, что для света уже приняты и корпускулярное, и волновое представления. Воспользуемся связывающим их квантовым правилом, чтобы выразить длину волны через характеристики частиц:



Определим теперь длину волны λ частицы вещества точно так же:

ДЛИНА ВОЛНЫ = h/ИМПУЛЬС = h/mv

Тогда частица, обладающая большой массой и обычной скоростью, будет иметь настолько малую длину волны λ, что эффектами интерференции и дифракции можно пренебречь, — винтовочная пуля должна лететь по прямой, а не осыпать мишень со всех сторон частями интерференционно-дифракционной картины. Но у малых частиц, таких, как электрон, должны проявляться волновые эффекты. Подобно рентгеновским лучам, электроны из трубки с разностью потенциалов 50—100 в должны иметь длину волны, сравнимую с расстоянием между атомными плоскостями в кристаллах. Дэвиссон и Джермер из лаборатории, принадлежащей компании «Белл телефон», наблюдали «волны электронов», облучая маленький кристалл никеля потоком электронов[198]. К тому времени, когда де-Бройль высказал свое предположение, они уже обнаружили, что электроны, вместо того чтобы рассеиваться в широком интервале направлений, отдают предпочтение некоторым из них, что весьма загадочно для поведения частиц. Затем, приняв предположение о волнах, они проделали тщательные измерения: электроны из пушки с напряжением 54 в, которыми облучали кристалл никеля, интенсивно рассеиваются на угол 50° по отношению к отраженному назад пучку, а на все другие углы, кроме угла рассеяния назад, — очень слабо.



Фиг. 198.Электроны как волны: опыт Дэвиссона и Джермера.


Задача 5. Волны электронов?

а) Рассчитайте длину волны де-Бройля для «54-вольтовых» электронов по следующей схеме: кинетическая энергия электрона равна энергии, полученной его зарядом при прохождении разности потенциалов 54 в.

Вычислите:

1) скорость электрона v (пользуйтесь обычной механикой, поскольку он движется медленно по сравнению со светом. Возьмите е/m = 1,8∙10>11 кулон/кг);

2) его массу m (Используйте значения е/m и е. Возьмите е =1,6∙10>-19 кулон);

3) его импульс mv;

4) его длину волны λ. (Возьмите h = 6,6∙10>-34 дж∙сек, или (м)∙(кг∙м/сек).)

Ответ к вопросу 4 получится в метрах. Выразите его также в ангстремах (10>-10 м).


б) Повторите контрольные расчеты Дэвиссона и Джермера. По измерениям с рентгеновскими лучами им было известно, что расстояние между слоями атомов в их кристалле никеля составляет 2,15 А°. Волновая теория предсказывает, что для волн с длиной волны λ, падающих на дифракционную решетку с постоянной d, дифракционный максимум приходится на угол А, который определяется из соотношения d∙sin A = λ. (Как в случае рентгеновских лучей, в случае электронов сильный дифракционный максимум создают несколько слоев атомов, отражающих волны совместно в одной и той же фазе. Тем не менее можно все же использовать приведенную выше формулу для плоской решетки, выведенную в гл. 10. Но там d означало расстояние между штрихами решетки, здесь — расстояние между рядами атомов кристалла. При таком расчете для получения максимума дифракционного пучка требуется точно такая же длина волны, как и при полном трехмерном рассмотрении.)

1) Вычислите К для волн, которые дают дифракционный максимум под углом 50° при рассеянии на кристалле с межатомным расстоянием 2,15∙10>- 10 м (sin 50°= 0,766).

2) Сравните полученный результат с предсказанной вами в пункте а) «длиной волны» использованных электронов.


Измерения показали, что интерференционная картина соответствует длине волны λ = h/mv. Одновременно аналогичная проверка была проведена в Англии Г. Томсоном. С тех пор проводилось много измерений аналогичных дифракционных картин для потоков электронов, протонов, атомов и даже нейтронов. Эти картины показывают, что частицы движутся в направлении распространения волн. Волны сообщают нам, где мы сможем обнаружить частицы, [Никаких исключений в этом отношении мы не ожидаем. Убедившись в волновом поведении атомов, мы считаем, что оно свойственно также бейсбольным мячам и винтовочным пулям, но грубые оценки их длин волн даже при медленном движении показывают, что они (длины волн) слишком малы, чтобы их можно было измерить или как-либо заметить любые волновые эффекты.]


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.