Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [158]

Шрифт
Интервал

до огромных и сложных протеиновых молекул.

Физическая Химия: изучение физического действия химических процессов: теплота реакции, теплота растворения; измерение массы молекулы по давлению паров, по изменению осмотического давления, по изменению точки замерзания растворов; механика и статистика химических реакций и т. п.

Однако между Физикой и Химией оставался большой разрыв. Химики все шире использовали физические инструменты, но, как ни странно, физики зачастую оставались в стороне и теряли хорошие возможности связать химические превращения и достижения в области физических знаний.

Выделились, сохраняя в то же время сильную связь с физикой и химией, другие науки — астрономия, минералогия и т. п. Во всей физической науке возникли в качестве надежных результатов и критериев определенные всеобщие правила, или Принципы: векторное сложение скоростей, сил и т. п.; галилеевская относительность; ньютоновские законы движения; постоянство массы; сохранение импульса, сохранение энергии; закон тяготения; закон Кулона и содержащие его уравнения Максвелла; трактовка света и др. как электромагнитных волн; неделимость атомов, идентичность всех атомов данного элемента.

Физику, развитую в это время, называют теперь Классической Физикой. Она казалась хорошо понятой, завершенной (за исключением мелких деталей), точной и вполне удовлетворительной. Кое-что из нее было распространено вниз (по масштабной шкале изучаемых объектов) на атомы и молекулы и вверх на солнечную систему в предположении, что там применимы те же самые общие правила и принципы. Физику падающего камня, отскакивающего мяча и т. п. самонадеянно экстраполировали[175] на планеты и молекулы газа.


НОВАЯ ФИЗИКА

Уверенность и полнота классической физики были опрокинуты в этом реке пятью великими достижениями:

1. С открытием электронов и радиоактивности была обнаружена атомная структура. Атомы можно разрушить, и они даже могут превращаться в другие атомы. Возникла ядерная модель атома.

2. Теория относительности разъяснила некоторые парадоксы и изменила наши представления о пространстве, времени, массе и полях.

3. Было обнаружено, что у света (и всех других видов излучений) энергия упакована в «снаряды», хотя распространяется он подобно волнам. Возникла квантовая теория. Это привело к модели атома Бора, который руководствовался своим принципом соответствия.

4. Было обнаружено, что объекты атомной физики (электроны, ядра…) ведут себя и как волны, и как частицы. Двойственное поведение «волна-частица», таким образом, оказалось свойственным и излучению, и частицам вещества. Это привело к новой теории, «квантовой механике», с важными философскими идеями принципа неопределенности и дополнительности.

5. Было открыто множество новых субатомных частиц: электроны, ядра, нейтроны, мезоны, нейтрино и недавно много других.

Из этих достижений указанное в пункте 1 было описано в предыдущей главе, указанное в пункте 2 — в гл. 31. Достижения, указанные в пунктах 3 и 4, обсуждаются в этой главе. Мы не будем касаться описания новейших частиц, указанных в пункте 5,— экспериментальное и теоретическое наступление на них продолжается, и нам остается с нетерпением ожидать решения существующих сегодня загадок ядерных сил и структуры ядер.


Атомная физика 1890–1915 гг.

В начале этого века «атомная физика» была юной наукой, быстро растущей на базе новых экспериментов с электричеством. Старая наука об электричестве и магнетизме была построена в прошлом веке, обеспечив последовательные знания о зарядах, токах и полях. С практической стороны ученые и инженеры развили — посредством интерполяции — промышленное использование этой науки, создав электромоторы, измерительные приборы, лампы, силовые системы и линии связи. С теоретической стороны экспериментальные законы, объединенные в уравнениях Максвелла, логически привели к предсказанию радиоволн.

На грани веков радиоволны были получены с помощью электричества, хотя еще и не использовались, и было установлено, что свет представляет собой очень короткие радиоволны. Затем, когда картина казалась близкой к завершению, появились новые сведения об атомах и электронах сразу из нескольких различных источников: открытие рентгеновских лучей, радиоактивности, фотоэлектрического эффекта и эмиссии электронов из нагретых металлов; исследования ионов и электронов в разрядных трубках. Оказалось возможным расчленить атомы на положительные ионы и универсальные электроны с доступными измерению свойствами. В начале века была предложена и проверена картина внутренней структуры атомов.

В первой четверти этого века количество знаний об атомах увеличилось, но появились некоторые серьезные парадоксы. Резерфорд предложил хорошую теоретическую модель атома: малое по размерам массивное ядро окружено движущимися электронами подобно крошечной солнечной системе. Электроны все одинаковы, с массой, равной 1/1840 массы атома водорода, и с универсальным зарядом е = —1,6∙10>-19 к. Ядро невероятно мало; его диаметр составляет 1/10 000 А° — атомной единицы длины. Ядра являются носителями положительного заряда, варьирующегося от +


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.