Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [156]

Шрифт
Интервал

, т. е. отношением массы всего ядра к полному числу нуклонов. Тогда ясно, что если в каком-либо событии масса на один нуклон уменьшилась, то нуклоны потеряли часть своей массы и, следовательно, при этом выделилась какая-то энергия. Поэтому обычно рисуют очень важный график: масса на один нуклон в зависимости от массового числа для всех элементов. Из этого графика сразу видно, какую массу потерял каждый нуклон при образовании того или иного атома: достаточно сравнить значение массы на один нуклон в этом атоме со средней массой изолированного нуклона — величиной, значение которой лежит где-то между 1,0076 для протона и 1,0089 для нейтрона, скажем 1,0083. Чем ниже точка, отвечающая тому или иному атому на графике, тем больше его энергия связи.



Фиг. 169.Треки в фотоэмульсии.

>Треки частиц здесь образуют не капельки воды, как в камере Вильсона, а почернение в фотоэмульсии из-за выделившихся частичек серебра. На этом фотоснимке, сильно увеличенном, показана «звезда», или «взрыв» ядра: частица космических лучей столкнулась с одним из ядер фотоэмульсии, вероятно с ядром серебра, и разбила его на 7 протонов, 5 альфа-частиц и несколько тяжелых осколков. Трек первичной частицы не виден.


Масса на один нуклон вычисляется следующим образом:

МАССА на ОДИН НУКЛОН = МАССА ЯДРА/ЧИСЛО НУКЛОНОВ

где

МАССА ЯДРА = МАССА НЕЙТРАЛЬНОГО АТОМА — МАССА ЕГО ЭЛЕКТРОНОВ.

МАССА АТОМА атома (или, точнее, его ИОНА>+) измеряется на масс-спектрографе с высокой точностью; она выражается в атомных единицах массы (в этих единицах масса О>16 равна 16,0000); число нуклонов в атомном ядре (протоны + нейтроны) — его массовое число — это масса атома (в атомных единицах массы) («атомный вес»), округленная до ближайшего целого числа.

Для любого атома в периодической системе элементов, равно как и для всех его изотопов, масса ядра (в атомных единицах массы) мало отличается от целого числа. Например:

— масса водорода равна примерно 1, точнее 1,0076

— масса лития 7,0165

— масса железа меньше 56, а именно 55,938

— масса ядра урана 235,068

Это целое число (1…. 7…. 56…. 235….) означает число нуклонов в ядре, т. е. его массовое число. Разности между атомными (или ядерными) массами и целыми числами показывают различия в энергиях связи — в величине энергии, выделяемой при объединении нуклонов в ядро.

Если массу ядра разделить на число нуклонов, т. е. на массовое число, то получаются величины, которые начинаются с 1,009 для нейтрона и 1,008 для протона, а затем падают по величине до минимального значения, равного 0,9993 для «средних элементов», таких, как железо, медь, бром, криптон, и далее медленно возрастают примерно до 1,0003 в случае урана. Поэтому, если бы тяжелое ядро можно было поделить на два промежуточных ядра, то его нуклоны потеряли бы значительную массу в силу большого выделения энергии. Как это видно из графика от урана к средним элементам, масса на один нуклон падает примерно на 0,001. Для 235 нуклонов в ядре U>235 масса, отвечающая выделенной энергии, была бы равна 235∙0,001, т. е. 0,235 а.е.м. Энергия, отвечающая такой массе, равна 0,235∙931 Мэв, т. е. около 200 Мэв.



Фиг. 170.Кривая «масса, приходящаяся на один нуклон в ядре», в зависимости от массового числа:

>Масса, приходящаяся на один нуклон = Масса ядра, найденная с помощью масс-спектрографаПолное число протонов и нейтронов 



Фиг. 170. (продолжение)


Из графика следует, что энергия при делении может выделяться только в случае тяжелых ядер. Ядра средних элементов — самые стабильные: их нуклоны не могут потерять массу, в какую бы сторону ни двигаться на графике: влево или вправо, т. е. они обладают самой большой энергией связи.


Энергия, выделяющаяся при синтезе ядер

Энергия может выделяться не только при делении, но и при синтезе, т. е. при слиянии легких ядер. Кривая на графике падает от легких ядер к средним, а это значит, что при синтезе должна выделяться энергия. В отличие от деления для синтеза нет необходимости в нейтронах. В этом случае задача состоит в том, чтобы, преодолев электрическое отталкивание, сблизить легкие ядра на достаточно малые расстояния друг от друга, где уже начинают действовать между ними ядерные силы притяжения. Если бы можно было заставить два протона и два нейтрона объединиться в ядро атома гелия — или же четыре протона с соответствующими превращениями, — то при этом выделилась бы огромная энергия.

Заставить сблизиться ядра можно с помощью нагрева до высоких температур, когда в результате обычных столкновений ядра смогут сблизиться на столь малые расстояния, чтобы ядерные силы вступили в игру, и произошел синтез. Начавшись, процесс синтеза, по-видимому, сможет дать такое количество тепла, которое нужно для поддержания высокой температуры, необходимой для дальнейших слияний ядер. При этом получился бы грандиозный фейерверк, размеры которого контролировались бы только количеством необходимого материала. Такой процесс, по-видимому, происходит в горячих звездах. Вероятно, что многостадийный процесс «горения» водорода, в результате которого происходит синтез ядер гелия, является источником непрерывного потока солнечной радиации.


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.