Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - [77]

Шрифт
Интервал

. Начальное количество движения направлено по прямой АВ. Поэтому

НАЧАЛЬНОЕ КОЛИЧЕСТВО ДВИЖЕНИЯ, НАПРАВЛЕННОЕ ПО АВ + ДОБАВОЧНОЕ КОЛИЧЕСТВО ДВИЖЕНИЯ, НАПРАВЛЕННОЕ ВДОЛЬ BS = НОВОЕ КОЛИЧЕСТВО ДВИЖЕНИЯ, НАПРАВЛЕННОЕ ПО ВС.

Из второго закона Ньютона следует, что количество движения по ВС — вектор. Поэтому суммирование необходимо проводить по законам векторного сложения (фиг. 155).



Фиг. 155.Изменение количества движения в точке В.


Так как масса планеты постоянна, то мы можем сократить ее и пользоваться для сложения скоростями:


СКОРОСТЬ ВДОЛЬ АВ + ПРИРАЩЕНИЕ СКОРОСТИ ВДОЛЬ BS = СКОРОСТЬ ПО НАПРАВЛЕНИЮ ВС.

Изобразим скорость планеты вдоль прямой АВ отрезком АВ. Тогда отрезок ВХ также будет равен этой скорости, а отрезок ВС будет соответствовать новой скорости планеты, направленной по прямой ВС (так как все отрезки равны расстояниям, проходимым за равные промежутки времени). Пользуясь этим масштабом, мы можем построить векторную диаграмму (фиг. 156), выражающую записанные выше уравнения.



Фиг. 156.Повторение фиг. 165 для скоростей.

>Масштаб выбран таким, чтобы АВ или ВХ равнялись начальной скорости вдоль АВ, до ее изменения под действием силы притяжения в точке В.


Пусть ВХ (=) — начальная скорость до воздействия усилия, а ВС — конечная скорость после воздействия. Изменение скорости будет равно вектору BY, направленному по линии BS в сторону точки S. Построив параллелограмм с диагональю ВС, получим требуемый результат. Из свойств параллелограмма следует, что сторона ХС параллельна BY, так что точка С лежит на линии, параллельной BS.

Теперь рассмотрим треугольники SBC и SBX, представленные на фиг. 157.



Фиг. 157. Повторение фиг. 154, точка С лежит на прямой ХС, параллельной BY или ВS (а); треугольники одинаковой площади заштрихованы (б).


Они имеют одно и то же основание BS и находятся между параллельными прямыми, поэтому площади их равны. Площадь SBC равна площади SBX, которая в свою очередь равна площади SBА. Следовательно, треугольники SBА и SBC имеют одинаковую площадь. По аналогичным причинам треугольники SBC и SCD тоже имеют равные площади. В конечном итоге все площади треугольников равны между собой и закон Кеплера для этого движения выполняется. При этом необходимо, чтобы усилие всходило из одной и той же точки S. Если теперь чаще прикладывать усилие (но соответственно меньшее по величине), мы получим орбиту, как на фиг. 158, близкую к гладкой кривой. При этом будет соблюдаться и закон Кеплера, потому что сила направлена от планеты к Солнцу. Если прикладывать усилия еще чаще, то в пределе мы придем к случаю непрерывной силы с орбитой в виде гладкой кривой. Это и доказывает справедливость второго закона Кеплера для гладкой криволинейной орбиты.



Фиг. 158.Уменьшение равных интервалов времени от А до В, от В до С.

>Орбита близка к гладкой кривой. Когда орбита представляет собой гладкую кривую, каждый сегмент, перекрываемый за равные времена, можно рассматривать как малый треугольник. Следовательно, у всех сегментов должна быть одинаковая площадь


Второй закон Кеплера и момент количества движения

Ньютон пришел ко второму закону Кеплера, исходя из основных положений своей механики. Закон обратных квадратов для этого не требуется. Любое притяжение, направленное к Солнцу как центру, будет обеспечивать выполнение этого закона.

В современной механике эта задача представляет собой случай сохранения момента количества движения. Что такое момент количества движения[96] и почему мы уверены, что он сохраняется? Ниже дано краткое объяснение, слишком примитивное, чтобы быть убедительным, но имеющее целью дать общее представление об этом фундаментальном законе сохранения.

Прямолинейное движение описывается такими понятиями, как расстояние (s), скорость (v), ускоряющая сила (F)…. законами и соотношениями типа F∙Δt = Δ(Mv)…, и такими принципами, как сохранение количества движения. Когда тело вращается, не совершая поступательного движения, мы можем применить законы Ньютона к каждой его движущейся части и составить эквивалентную схему. Вместо пройденного расстояния мы будем теперь иметь угол поворота (выраженный в радианах или числе оборотов). Вместо линейной скорости мы будем иметь дело с угловой скоростью (в оборотах в минуту или в радианах в секунду). Вместо силы будет фигурировать момент силы, равный произведению силы на плечо, — причина, заставляющая тело вращаться все быстрее и быстрее. Соотношению

СИЛА∙ВРЕМЯ = ПРИРАЩЕНИЕ КОЛИЧЕСТВА ДВИЖЕНИЯ,

т. е. второму закону Ньютона, будет соответствовать

МОМЕНТ СИЛЫ∙ВРЕМЯ = ПРИРАЩЕНИЕ МОМЕНТА КОЛИЧЕСТВА ДВИЖЕНИЯ.

Задумайтесь над смыслом момента количества движения, и вы, вероятно, придете к правильному заключению: подобно тому как момент силы равен произведению силы на плечо (Fr), момент количества движения равен количеству движения, умноженному на плечо (Mvr).

Умножьте F и Mv на плечо относительно выбранной оси, и вы получите вариант второго закона Ньютона для случая вращательного движения. Плечо — это перпендикуляр, проведенный от оси в направлении действия вектора силы или количества движения.

Предположим, что два невращающихся тела сталкиваются и в результате одно из них начинает вращаться.


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.