Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - [74]

Шрифт
Интервал



Фиг. 148.Земное притяжение.


Ньютон предположил, что именно вес Луны удерживает ее на орбите. Если бы Луна находилась очень близко от поверхности Земли, то ее вес обусловливал бы ее ускорение g, равное примерно 9,81 м/сек>2, т. е. такое же, как и у яблока, если не считать, что объем Луны больше, и это, конечно, не разрешает поставить подобный эксперимент. Будет ли Луна иметь такое же ускорение на своей орбите? Будет лила орбите Луны v>2/R ~ 9,81 м/сек>2?Луна совершает полный оборот по своей орбите относительно неподвижных звезд за 27,3 дня. Ньютон знал, что радиус лунной орбиты R равен 60 радиусам земного шара, т. е. 60R. Ему был также приближенно известен радиус Земли, так что он мог вычислить скорость v, разделив длину окружности лунной орбиты 2πR на время Т, равное одному месяцу, а отсюда вычислялось ускорение v>2/R. В ответе получалась величина, значительно меньшая 9,81 м/сек>2. Если «гравитация» меняется с расстоянием, g может быть значительно меньше на лунной орбите. Ньютон нашел простое правило убывания силы притяжения — закон обратной пропорциональности квадрату расстояния. По закону обратных квадратов убывают с расстоянием сила света, интенсивность радиоволн, звука, а также сила, создаваемая магнитным полюсом или электрическим зарядом.

Закон обратных квадратов справедлив во всех случаях прямолинейного распространения из источника при отсутствии поглощения[93]. Правильная мысль пришла в голову Ньютону, когда он пытался получить третий закон Кеплера! Он попробовал применить зависимость, обратно пропорциональную квадрату расстояния. Луна находится на расстоянии шестидесяти земных радиусов, а яблоко — на расстоянии лишь одного радиуса от центра Земли, поэтому притяжение в области Луны уменьшается в 1/60>2 раз, или в 3600 раз. Ускорение Луны уже будет не 9,81 м/сек>2, а 9,81/3600 м/сек>2. Легко подсчитать значение v>2/R для Луны и убедиться, что оно совпадает с «предсказанной» таким способом величиной. Представьте себе тот восторг, который вы бы испытали, открыв это соответствие! Это была успешная проверка соотношений F = Ma и av>2/R и закона обратных квадратов для силы тяжести. Вы могли бы сделать первую проверку выдающейся теории — и великое открытие принадлежало бы вам!

Однако сам Ньютон, полный нетерпения, но дальновидный, не был полностью удовлетворен этой проверкой. По непостижимым причинам он отложил все вычисления еще на несколько лет. По-видимому, он стремился решить задачу о притяжении тела шаром с распределенной равномерно в нем массой, подобным Земле. Он уменьшил величину g в 60>2 раз, но уменьшение от 1 до (1/60)>2 предполагает, что тело на поверхности Земли, для которого ускорение g = 9,81 м/сек>2, находится как бы на расстоянии одного земного радиуса от притягивающего центра. Притягивает ли громадный круглый земной шар яблоко так, как если бы вся масса Земли была сосредоточена в ее центре на расстоянии 6300 км от поверхности? Близкие от яблока части земной массы должны притягивать его очень сильно (согласно закону обратных квадратов).



Фиг. 150. Задача Ньютона.

>Яблоко, притягиваемое различными частями Земли (показаны четыре отдельных элемента)


Другие части земной массы, находящиеся, например, на расстоянии 12 600 км от яблока, будут притягивать его очень слабо. Сила притяжения различных частей земной массы действует на яблоко под разными углами. Какова результирующая всех этих сил? Здесь мы сталкиваемся с очень трудной математической задачей — сложением бесконечного числа различных притяжений. Она легко решается с помощью интегрального исчисления, но этот тонкий математический аппарат в то время только создавался. Ньютон сам изобрел его для решения этой и других задач, входящих в его работу; одновременно это же сделал и немецкий математик Лейбниц. Его вычисления, связанные с движением Луны, были отложены до тех пор, пока он не убедился, пользуясь изобретенным им методом, что шар с равномерно распределенной массой притягивает тела так, как если бы вся его масса была сосредоточена в его центре, при условии, что каждый участок притягивает тела по закону обратных квадратов. «Как только Ньютон доказал эту замечательную теорему, а мы знаем по его собственным словам, что он и не мечтал получить столь замечательный результат, пока ему не удалось это сделать с помощью собственных математических исследований, весь механизм Вселенной предстал перед ним»[94]. После этого он вернулся вновь к изучению движения Луны и с помощью одного лишь расчета проверил свои законы движения, формулу v>2/R и замечательную идею о законе обратной пропорциональности силы тяжести квадрату расстояния как причины движения Луны по круговой орбите. На сей раз Ньютон был удовлетворен вычислениями. Согласие было полное; необходимая сила получалась за счет уменьшения силы тяжести. Ньютону удалось раскрыть тайну движения Луны.


Объяснение Ньютона

С одной стороны, Ньютон дал объяснение проблеме, предположив, что Луну удерживает на орбите сила тяжести. С другой стороны, он ничего не объяснил. Не была объяснена сущность гравитации, не было высказано никаких соображений относительно того, что же, собственно, представляет собой сила тяжести. Ньютон лишь показал, что одна и та же причина вызывает или обусловливает и падение яблока и движение Луны. Подобное нахождение общих причин нескольких явлений и называется в науке «объяснением».


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.