Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - [59]

Шрифт
Интервал

), однако теперь требуется выполнить геометрическое сложение.]

а) Если оба вектора, старый вектор 2 и новый вектор 5, направлены на восток, то какова будет их разность? Какой вектор нужно добавить к вектору 2, чтобы получился вектор 5? Изобразите это:



б) Если векторы (старый вектор А и новый вектор В) направлены в разные стороны так, как это показано на схеме



то что же тогда будет их разностью? «Что должно быть добавлено к вектору А, чтобы получился вектор В?» Покажите это стрелками для каждого случая. В каждом случае мы должны вычесть А из В.

в) Если векторы не приложены к одной и той же точке, вы должны сначала перенести один из векторов или оба в общую точку. После этого найдите, вновь пользуясь стрелками, разность В — А для каждого случая, изображенного здесь.


Кеплеровы жесткие «рычаги», предназначенные для осуществления движения планет, вскоре оказались ненужны: новое учение Галилея представило всю проблему в другом свете. По мнению Галилея, движущееся тело, предоставленное самому себе, будет продолжать двигаться; он предложил остроумный мысленный эксперимент для обоснования такого взгляда. Поколением позже Ньютон выразил то же самое посредством некоторого рабочего правила, а именно своего первого закона:

Каждое тело остается, в состоянии покоя или прямолинейного движения с постоянной скоростью, если на него не действует сила.

Позже Ньютон более четко представил эту расплывчатую идею о движении с помощью определенного количества движения, которое можно рассчитать путем умножения массы на скорость, и сформулировал второй закон:

Действующая сила изменяет количество движения в направлении своего действия.

СКОРОСТЬ ИЗМЕНЕНИЯ КОЛИЧЕСТВА ДВИЖЕНИЯ ПРЯМО ПРОПОРЦИОНАЛЬНА ДЕЙСТВУЮЩЕЙ СИЛЕ.

Это было эквивалентно следующему утверждению:

Произведение массы на ускорение пропорционально результирующей силе.

В период между Галилеем и Ньютоном эти новые представления о движении (к которым на ощупь шли философы далекого прошлого и которые были частично установлены Леонардо да Винчи много раньше Галилея и Декартом после него) зрели для того, чтобы сыграть свою роль в астрономии. Члены только что созданного Королевского общества, которые вскоре приветствовали пришедшего в их ряды Ньютона, горячо обсуждали законы Кеплера, задавая совершенно другие вопросы почему. Они больше не беспокоились о внешнем воздействии, направляющем планеты вдоль их траекторий. Галилей убедил их, что нет никакой необходимости в подталкивающей силе; планеты будут продолжать двигаться сами по себе, если их оставить в покое, подобно куску льда на поверхности замерзшего пруда или пуле в пространстве.

Ученые отбросили представление о кеплеровых рычагах. Вместо них были введены внутренние силы, заставляющие планеты двигаться по искривленным орбитам. Такие силы создают усилие «поперек движения» планеты и будут сообщать ей импульс в новом направлении. Что это за силы? Новый вопрос повис в воздухе.

Гук, Гюйгенс и Ньютон взялись за его решение.

Считая орбиты планет примерно круговыми и опираясь на третий закон Кеплера, они предположили, что между Солнцем и планетами существует взаимное притяжение, которое уменьшается обратно пропорционально квадрату расстояния между ними (см. следующую главу). Но может ли эта сомнительная и совершенно непонятная сила заставить планеты следовать по эллиптическим орбитам в соответствии с первым и вторым законами Кеплера?

Разобраться в этом было непосильной задачей для всех, кроме Ньютона.

Задача потребовала ясной формулировки законов движения и искусного математического аппарата. Ньютон не только решил эту задачу, но и превратил это решение в основу хорошей теории.

Прежде чем изучать его работы, следует распространить обсуждение вопроса о силе и движении на случай новых сил, искривляющих траекторию движущихся тел. Вы уже встречались с аналогичной ситуацией при рассмотрении полета снарядов, когда вследствие силы тяжести к горизонтальному движению добавляется вертикальная составляющая и в результате траектория становится криволинейной. Это ускоренное движение кажется более легким для понимания. Осмелимся сказать: «кажется более естественным», нежели равномерное движение по круговой орбите с постоянной скоростью.



Фиг. 100.


Ускорение тела, движущегося по окружности

Рассмотрим планету, движущуюся по окружности (камень на веревке, или самолет, или атом, фиг. 101). Будут ли они иметь ускорение? Если нет, то нам трудно будет отыскать действующую на них результирующую силу, но тогда почему они не движутся вперед по прямой? Так все же не имеет ли планета ускорения' Конечно, ускорение вдоль направления ее движения отсутствует, ведь мы выбрали случай движения с постоянной скоростью. Может быть, имеется ускорение, направленное поперек движения планеты, перпендикулярно ему?



Попытаемся нарисовать векторы, с помощью которых можно было бы рассмотреть изменение (вектора) скорости. Пусть тело Р перемещается по окружности радиусом R с постоянной скоростью v, представляющей абсолютную величину вектора скорости тела Р. Направление скорости совпадает с направлением перемещения тела в каждый момент времени. В точке А вектор скорости тела v направлен, как это показано на фиг. 102, по касательной. Если тело движется с


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.