Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - [187]

Шрифт
Интервал

и покоящейся массы m. Следы частиц искривлены, ибо все это происходило в сильном магнитном поле, перпендикулярном плоскости картинки (фиг. 159).



Фиг. 159.Измерения представленной на фиг. 158 фотографии.


Измерение кривизны дает импульс каждого из электронов после соударения и импульс налетающего электрона до соударения. Измерение углов подтверждает пропорцию этих импульсов. Если для вычисления масс воспользоваться формулой нерелятивистской механики (E>кин = >1/>2 mv>2 и т. д.), предполагая упругое соударение, то масса налетающей частицы должна быть примерно в 4 раза больше массы частицы-мишени. Тем не менее следы выглядят как электронное соударение и мы не можем приписать двум электронам классические массы m и 4m. Поэтому попытаемся проверить релятивистскую механику с E>кин = (mm>0)∙с>2.

ИМПУЛЬС = mv и m = m>0/√(1 — (v>2/c>2))

Тогда все оказывается согласованным. Из величины магнитного поля и измерения кривизны находим:

ДО СОУДАРЕНИЯ

налетающий электрон имеет массу 12,7∙m>0 и скорость 0,9969∙с.

Поскольку следы коротки и слабо искривлены, радиус кривизны измерить очень точно не удается. Поэтому импульс налетающей частицы, а следовательно, ее масса определяются с точностью до 6 %. Другими словами, -

Macca = 12,7∙m>0± 6 % = 12,7∙m>0± 0,8∙m>0 .

ПОСЛЕ СОУДАРЕНИЯ

разлетающиеся частицы имеют массы 8,9∙m>0 и 4,3∙m>0 и скорости 0,9936∙с и 0,9728∙с,

где m>0 — масса покоя электрона, а с — скорость света. До соударения полная масса была равна 13,7∙m>0 (включая массу мишени), после соударения она стала 13,2∙m>0. В этом соударении масса сохраняется в пределах точности 6 %, подобно энергии, измеряемой теперь величиной >2.


Смысл изменения массы

Существует простая физическая интерпретация изменений массы: добавочная масса является массой, соответствующей кинетической энергии тела. Проверим это с помощью алгебры, воспользовавшись разложением радикала для достаточно малых скоростей в ряд:



= m>0 + (1/2)∙m>0∙(v>2/c>2) + Пренебрежимо малые величины при малых скоростях

= Масса покоя E>кин/с>2

=Масса покоя + Macca, соответствующая кинетической энергии.


Максимальная скорость с

По мере роста скорости тела и приближения ее к скорости света ускорять тело становится все труднее и труднее — масса его приближается к бесконечности. Экспериментаторы, работающие с линейными ускорителями (которые разгоняют электрон по прямой), обнаруживают, что при высоких энергиях их «подопечные» приближаются к скорости света, но никогда не превосходят ее. При каждом последующем толчке электрон приобретает большую энергию (и, следовательно, большую массу), но становится лишь чуть-чуть быстрее (поэтому ускоряющие промежутки можно равномерно располагать вдоль пучка, что будет неким упрощением конструкции).

Рост массы до бесконечности при приближении к скорости света означает бесконечное «затруднение ускоряться». Наши попытки заставить тело двигаться быстрее остаются тщетными до тех пор, пока тело не достигнет очень больших скоростей, где приходится «карабкаться» по все более и более крутому склону к отвесной стене, когда скорость подходит к скорости света. Поэтому не следует удивляться предсказанию теории относительности, что никакое тело не может двигаться быстрее скорости света, ибо при попытке ускорить его до этой скорости мы сталкиваемся со все большей и большей массой и, следовательно, получаем все меньший отклик на действие ускоряющей силы.


Релятивистское сложение скоростей

Двигаться быстрее света? Ну, конечно, это возможно: возьмите на ракету, летящую со скоростью >3/>4 с, ружье и выстрелите вперед пулей, летящей со скоростью >1/>2 с относительно ружья. Тогда скорость пули будет >1/>2 с >3/>4 с = 1>1/>4с. Но ведь это галилеево сложение скоростей, а нам нужно найти релятивистское правило!



Фиг. 160. Измерение скорости.


Пусть наблюдатель ε в своей лаборатории видит тело, движущееся со скоростью u вдоль оси X. Какова скорость этого тела по мнению наблюдателя е'?

По измерениям ε' скорость u = Δxt, а по измерениям ε' скорость u' = Δx'/Δt', и простая алгебра с использованием преобразований Лоренца дает

вместо галилеева u' = (u v). Обратное преобразование дает


Для обычных скоростей скобка [] в знаменателе практически равна единице и формула сложения скоростей сводится к галилеевой. Проверьте это для пули, выпущенной из ружья в вагоне обычного экспресса. Едущий в вагоне наблюдатель ε' видит, что из ружья вылетает пуля со скоростью u', а наблюдатель ε, сидящий у полотна, видит, что пуля движется со скоростью u. Экспресс же, по его наблюдениям, проносится мимо со скоростью v. Тогда u = (u' + v)/[1].

Формула Галилея дает:

СКОРОСТЬ ПУЛИ ОТНОСИТЕЛЬНО ЗЕМЛИ = СКОРОСТЬ ПУЛИ ОТНОСИТЕЛЬНО ПОЕЗДА + СКОРОСТЬ ПОЕЗДА ОТНОСИТЕЛЬНО ЗЕМЛИ.



Фиг. 161.Сложение обычных скоростей.


Обратимся снова к опыту с ружьем на ракете, летящей со скоростью >3/>4с, из которого со скоростью >1/>2 с вперед вылетает пуля. Сидящий в ракете наблюдатель ε' видит, что пуля вылетает со скоростью u' = (1/2)∙с, а находящийся на земле наблюдатель ε видит, что ε' и ракета несутся со скоростью >3/>4с; от ε' он знает, с какой скоростью из ружья вылетает пуля. Воспользовавшись затем релятивистской формулой, 


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Физика

Удивительный мир науки, которая раскрывает законы существования материи, существования Вселенной, предстает на страницах этой книги. Наша энциклопедия поможет юному читателю осознать незаметную на первый взгляд связь, которая существует между научными открытиями и техническими достижениями человечества, а также познакомит его со становлением и развитием основных направлений физики, расскажет о знаменитых ученых, чьи имена навсегда вписаны в историю мировой науки.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Чем мир держится?

В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.