Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - [185]

Шрифт
Интервал

увидел бы, что у проносящегося мимо него наблюдателя ε' творятся удивительные вещи. Наблюдатель ε воскликнул бы: «Вот чудак, у тебя же все приборы неправильные! Метр — короче моего, правильного, а часы отстают и за каждую секунду по моим точным часам они отсчитывают долю секунды». Между тем наблюдатель ε' не обнаружил бы в своей лаборатории никакого беспорядка и, взглянув на уносящегося ε и его лабораторию, закричал бы: «Сам чудак! У меня-то все в порядке, а посмотри, что творится у тебя! Метр короче… часы запаздывают…»

Допустим, наблюдатель ε измеряет и проверяет приборы ε' в тот момент, когда тот пролетает мимо. Оказывается, что метр, который ε считает стандартом, сократился до √(1 — (v>2/c>2)) м. Стандартные часы тикают медленнее, вместо секунды через каждые 1/√(1 — (v>2/c>2)) сек. А стандартная килограммовая гиря оказывается тяжелее: 1/√(1 — (v>2/c>2)) кг. Вот какие изменения увидит покоящийся наблюдатель в движущейся лаборатории. Однако движущийся наблюдатель, глядя на покоящуюся лабораторию, увидит те же самые особенности: метры там короче, часы идут медленнее, а массы увеличиваются. Преобразования Лоренца от ε' к ε и от ε к ε' совершенно симметричны. Если бы ε и ε' сравнили свои записи, они бы безнадежно переругались, ибо каждый из них обвинял бы другого в одних и тех же ошибках. Каждый из них видел бы, что все приборы другого, даже электроны, сжались в направлении движения. Каждый из них видел бы, что часы другого (даже колеблющиеся атомы) идут медленнее. (В направлениях X и Y, перпендикулярных движению, записи ε и ε' сошлись бы.) В том-то и состоит симметрия «относительности», что каждый из наблюдателей видит одни и те же дефекты в лаборатории коллеги независимо от того, кто из них движется. Важно только относительное движение между нами и приборами, так что не существует ни малейшей надежды выявить абсолютное движение.

Сокращение размеров и замедление хода часов определяются одним и тем же множителем 1/√(1 — (v>2/c>2)). При обычных относительных скоростях v двух наблюдателей этот множитель практически равен единице. Преобразования при этом превращаются в преобразования Галилея, характер которых согласуется с нашим «здравым смыслом». Возьмите сверхзвуковой самолет летящий со скоростью 3200 км/час (~ 900 м/сек). Для такой скорости множитель равен

1/√(1 — (0,9 км/сек / 300 000 км сек)>2), или 1,000 000 000 004

Длина самолета сократится, а часы будут идти медленнее, менее чем на половину триллиардной доли процента. При скорости 10 000 000 км/час (около >1/>100 с) множитель вырастает до 1,00005, а при скорости 100 000 000 км/час он превращается в 1,005 и приводит к изменению длины на >1/>2%.



Вплоть до нашего столетия ученым не приходилось иметь дело со скоростями, близкими к скорости света, за исключением, конечно, самого света, где она сталкивались со сплошными трудностями. Сейчас даже из маленьких циклотронов вырываются протоны со скоростью >2/>10 с, что дает множитель 1,02, электроны, порождающие рентгеновские лучи, ударяются о мишень со скоростью >6/>10 с, что дает множитель 1,2; β-лучи вылетают из радиоактивных атомов со скоростью >98/>100 с, что дает множитель 5, а электроны с энергией в миллиарды электрон-вольт из гигантских ускорителей — со скоростью 0,99999988 с и характеризуются множителем 2000.

В составе космических лучей имеются очень быстрые частицы — μ-мезоны. Энергия некоторых из них составляет около 1000 миллионов электрон-вольт, а скорость — >199/>200 скорости света. Для них

1/√(1 — (v>2/c>2)) = 1/√(1 — (199>2/200>2)) = 1/√(1/100) = 10

Эти мезоны представляют собой нестабильные частицы со временем жизни около 2∙10>-6 сек (2 мксек). Они возникают при соударениях в верхних слоях атмосферы, и чтобы дойти до нас, им требуется около 20∙10>-6 сек. Кажется загадочным, как могут они прожить столь долго. Теория относительности дает ответ на эту загадку мы наблюдаем за внутренними часами летящих мезонов. А по нашим часам они идут медленнее в 10 раз. Так что время жизни летящего мезона должно казаться нам равным 20∙10>-6 в сек. С точки зрения μ-мезона его время жизни нормальное, 2 мксек, но толщина проносящейся мимо него атмосферы сокращается в 10 раз по сравнению с нашими представлениями. Так что за свою короткую жизнь он успевает пройти этот путь.



Фиг. 155.Изменения, предсказываемые теорией относительности.

>а — длина движущегося метра по измерениям неподвижного наблюдателя; б — длина неподвижного метра по измерениям движущегося наблюдателя; в — время между тиканием стандартных часов по оценке неподвижного наблюдателя; г — масса стандартного килограмма по оценке неподвижного наблюдателя.


Измерительные линейки и часы

Измерительные линейки мы привыкли считать неизменными стандартами, прикладывая которые можно измерить длины или указать направления. Правда, это относится к идеализированному метру, который не коробится от сырости и не расширяется при изменениях температуры, но и эти слабости не могут поколебать доверия к его свойствам. Его длина была неизменной инвариантной. То же относится и к интервалу времени между «тиканием» хороших часов. (Если вы не доверяете маятниковым часам, возьмите настольные атомные часы.) Но теория относительности предупреждает, что измерительные линейки не обладают неизменной длиной. Вся идея твердого тела — безобидное и полезное представление физики XIX века — теперь только вводит в заблуждение. То же самое произошло и с идеей абсолютного времени, текущего независимо от пространства. Вместо этого оказалось, что движение влияет на наши измерения и только


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Чем мир держится?

В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.