Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - [18]

Шрифт
Интервал

Для этой цели подходит Полярная звезда или любая другая, наблюдаемая в своей наивысшей точке. Как показано на фиг. 39, б, сумма двух измеренных углов (х + у) дает угол z в центре Земли. На фиг. 39, в изображены три известных угла u, v, z; известно также, что радиусы R равны. Чтобы найти расстояние от Земли до Луны, можно либо прибегнуть к тригонометрии, либо сделать в масштабе простой чертеж (фиг. 40) на большом листе бумаги (древние астрономы пользовались насыпанным на пол песком) — нарисовать круг и провести радиусы ОА и ОБ, образующие угол z, равный сумме измеренных углов х + у. Нужно продолжить эти радиусы, чтобы они представляли вертикали в пунктах А и В. Из А следует провести линию до Луны АР, измерив угол u, который она образует с радиусом ОА, а из B провести прямую BQ. Точка пересечения этих прямых М определяет положение Луны на диаграмме. Измерив отрезок ОМ и разделяв его на радиус ОА, получим расстояние от Луны до Земли как кратное радиусу Земли.



Фиг. 39.Измерение расстояния от Земли до Луны.



Фиг. 40.Вычисление отношения расстояния до Луны к радиусу Земли на основании измерений.


Точные измерения дают:

РАССТОЯНИЕ ОТ ЗЕМЛИ ДО ЛУНЫ = ОКОЛО 60 РАДИУСОВ ЗЕМЛИ

~= 240 000 миль.


Размеры Солнца и его расстояние от Земли

Расстояние от Земли до Солнца оценить гораздо труднее даже сегодня, ибо Солнце крайне ярко, велико и очень удалено от нас.

Угол между лучами зрения глаз при наблюдении Солнца слишком мал, чтобы его можно было измерить, не прибегая к телескопу. Однако Аристарх придумал остроумную схему, с помощью которой удалось, хотя и очень приближенно, оценить расстояние от Земли до Солнца. Он наблюдал за Луной в той стадии, когда видна точно ее половина (фиг. 41).



Фиг. 41.Расстояние от Земли до Солнца.

>Определение расстояния от Земли до Солнца по известному расстоянию от Земли до Луны греческими астрономами. Они пытались измерить угол х (или SEM), который равен приблизительно 90°.


Солнечный свет должен падать на Луну под прямым углом к ЕМ (направлению взгляда наблюдателя). В этот момент наблюдатель измеряет угол между направлениями от Земли к Солнцу и от Земли к Луне. Этот угол, SEM, оказался почти (но не совсем точно) прямым. В большом треугольнике SEM два угла были известны. Третий малый угол, ESM, в основном и определяет расстояние от Земли до Солнца. Он получается вычитанием из 180° и очень мал: по оценке Аристарха он равен 3°, на самом же деле всего >1/>6°. Поэтому вывод Аристарха о том, что расстояние от Земли до Солнца примерно в 20 раз больше, чем до Луны, был занижен приблизительно в 20 раз. Это соотношение (расстояние до Солнца)/(расстояние до Луны) получается от рассмотрения углов на чертеже соответствующего масштаба или с помощью очень простой тригонометрии (EM/ES — косинус угла SEM. Поэтому ES/EM = 1/cos LSEM легко находится из тригонометрических таблиц).

Таким образом, астрономам в Александрии были известны приближенные значения размеров небесной системы и этими значениями (с незначительными изменениями) пользовались астрономы в течение многих столетий:

Земля: радиус 4000 миль.

Луна: расстояние от Земли 60 земных радиусов, или 240 000 миль; собственный радиус 1100 миль.

Солнце: расстояние от Земли 1200 земных радиусов (это значение считалось неточным, каким оно и было); собственный радиус 44 000 миль.

Планеты: расстояния до них были совершенно неизвестны, но предполагалось, что все они находятся дальше, чем Луна.

Звезды: расстояния до них также были совершенно неизвестны, предполагалось, что они находятся за Солнцем и планетами.

Из этих оценок видно, что на рисунках, иллюстрирующих затмения, обычно совершенно не выдержан масштаб. Фиг. 42 и 43 дают более близкие к действительности схемы, основанные на современных измерениях. Не удивительно, что затмения происходят столь редко. Призрачных конусов теней можно и не заметить. Орбита Луны наклонена под углом 5° к видимой траектории Солнца, поэтому затмения происходят еще реже.



Фиг. 42.Солнце, Луна, Земля.

>Чертеж дан не в масштабе. Солнце расположено слишком близко к Земле. Луна чрезмерно велика и расположена слишком близко к Земле.



Фиг. 43.Конусы теней Луны и Земли (в масштабе).


Более поздние теории

Смелое предположение о том, что Земля вращается и движется вокруг Солнца, не было встречено благосклонно Александрийской школой. По-прежнему оставалось популярным представление о том, что Земля покоится и находится в центре мироздания, однако модель с вращающимися концентрическими сферами была слишком сложной. Не совсем равномерное движение Солнца по «орбите» можно было описать, используя эксцентрическую окружность: согласно этой модели, Солнце движется по такой окружности равномерно. Земля же неподвижна и находится не в центре круга, а на некотором расстоянии от него. При этом, если наблюдать за Солнцем с Земли, будет казаться, что оно движется быстрее в некоторые времена года (примерно в декабре, в точке А) и медленнее на 6 месяцев позднее (в точке В). Это была неплохая теория. Теория должна быть простой и основываться на простых допущениях[23].



Фиг. 44.Схема эксцентрической орбиты Солнца.


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.