Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - [17]

Шрифт
Интервал

Эратосфену надо было проводить одновременные наблюдения в двух отстоящих друг от друга пунктах. Надежных часов, которые можно было бы сравнивать и переносить с места на место, у него не было, поэтому он обеспечивал одновременность наблюдений, выбирая полдень (когда Солнце находится в самом высоком положении) одного и того же дня в пунктах, расположенных на одной и той же долготе. Он проводил наблюдения в Александрии, где работал, и сравнивал их с наблюдениями, проводившимися некогда в Сиене[22], в 500 милях южнее. Наблюдения в Сиене сводились к следующему: в полдень, 22 июня, солнечные лучи, падая в глубокий колодец, достигали, воды и отражались вверх.

Эратосфену было известно об этом из литературных данных. Отсюда следовало, что полуденное Солнце находилось в Сиене в этот день вертикально над головой наблюдателя. Эратосфен измерил в полдень того же дня длину тени, отбрасываемой обелиском в Александрии, и нашел, что направление солнечных лучей составляет 7>1/>2° с вертикалью. Отсюда он заключил, что все солнечные лучи, падающие на Землю, параллельны. В этих опытах вертикали (радиус Земли) имели различные направления. Отсюда следовало, что радиусы Земли в Александрии и в Сиене пересекаются в центре Земли под углом 7>1/>2°. Если этот угол в 7>1/>2° соответствует 500 милям на поверхности Земли, то скольким милям будут соответствовать 360°? Остальное уже сводилось к простой арифметике. Измерить расстояние в 500 миль в те времена было трудно — вероятно, — такие измерения производились военными, чеканившими шаг. Имеются сомнения по поводу единиц, которыми пользовался Эратосфен, но по некоторым сведениям его ошибка была меньше 5 % — замечательный успех столь ранней попытки. Эратосфен пытался также определить расстояния до Солнца и Луны.



Фиг. 37. Определение размеров Земли по Эратосфену.


Размеры Луны и ее расстояние от Земли

Размеры Луны сравнивались с размерами Земли путем наблюдения лунных затмений. Отмечая время, в течение которого тень Земли пересекала Луну, Аристарх нашел, что диаметр тени, отбрасываемой Землей на Луну, в 2>1/>2 раза больше диаметра Луны. Если бы Солнце представляло собой точечный источник света, находящийся на бесконечно большом расстоянии, то Земля отбрасывала бы от падающего на нее потока параллельных солнечных лучей тень, поперечное сечение которой равнялось бы поперечнику Земли. В этом случае мы имели бы:

ДИАМЕТР ЗЕМЛИ = 2>1/>2 ЛУННЫХ ДИАМЕТРА,

или

ДИАМЕТР ЛУНЫ = >2/>5 ДИАМЕТРА ЗЕМЛИ,

т. е.

РАССТОЯНИЕ ОТ ЗЕМЛИ ДО ЛУНЫ, РАВНОЕ 110 ЛУННЫМ ДИАМЕТРАМ

= (>2/>5)∙110 ЗЕМНЫХ ДИАМЕТРОВ

= 44 ЗЕМНЫМ ДИАМЕТРАМ, ИЛИ 88 ЗЕМНЫМ РАДИУСАМ.

Отсюда следует, что если принять радиус Земли равным, согласно Эратосфену, приблизительно 4000 миль, то расстояние от Земли до Луны должно быть равно 350 000 миль. Предположение, что Солнце находится на бесконечности, представляется разумным, однако было бы неправильно считать его точечным источником, и Аристарх, конечно, это знал. Солнце — огромный пылающий шар, и поэтому тень от Земли (или другой планеты), на которую падает поток солнечных лучей, будет иметь коническую форму (с углом раствора ~ >1/>2°). При полном солнечном затмении Луна может лишь закрыть Солнце от наших глаз, причем конус лунной тени будет кончаться практически у Земли. На расстоянии от Луны до Земли тень от Луны суживается на целый лунный диаметр.

При лунном затмении ширина земной тени, отбрасываемой на то же расстояние (от Земли до Луны), должна уменьшиться на ту же величину, т. е. на лунный диаметр. Аристарх рассуждал следующим образом:

ДИАМЕТР ЗЕМЛИ — ОДИН ДИАМЕТР ЛУНЫ = 2>1/>2 ДИАМЕТРАМ ЛУНЫ,

т. е.

ДИАМЕТР ЗЕМЛИ = (1 + 2>1/>2) ДИАМЕТРАМ ЛУНЫ

=> 7/>8 ДИАМЕТРА ЛУНЫ

или

РАССТОЯНИЕ ОТ ЗЕМЛИ ДО ЛУНЫ = 110 ДИАМЕТРАМ ЛУНЫ

= (>2/>7)∙(110) ДИАМЕТРАМ ЗЕМЛИ

= 31,4 ДИАМЕТРА ЗЕМЛИ, или 63 РАДИУСАМ ЗЕМЛИ.

Более точные измерения, выполненные Аристархом и его последователями, показали, что расстояние от Земли до Луны равно 60 земным радиусам (что с точностью до 1 % совпадает с современными измерениями), т. е. около 240 000 миль.



Фиг. 38.Измерение размеров Луны (и, следовательно, расстояния до нее) древними греками.

>Наблюдения затмений показали, что ширина тени, отбрасываемой Землей на Луну, равна 2,5 диаметра Луны. Однако тень Земли сужается по мере того, как увеличивается расстояние до Земли, потому что Солнце — не точечный источник. Тень Луны почти исчезает на расстоянии от Луны до Земли, поэтому тень от Земли должна сузиться на ту же величину (один лунный диаметр) на этом расстоянии. Следовательно, диаметр Земли должен равняться 3,5 лунного диаметра.


Позднее расстояние от Земли до Луны было измерено следующим образом: наблюдатели на двух удаленных друг от друга пунктах, на одной долготе одновременно наблюдали Луну. Они измеряли угол между направлением, под которым была видна Луна, и между вертикалью в данной местности. Зная эти углы u и v, можно было определить положение Луны, если известно расстояние между пунктами. Большое расстояние измерить древним астрономам было трудно, но можно было воспользоваться вместо этого углом между радиусами Земли, соответствующими двум пунктам. Так что наблюдатель в каждом пункте измерял угол между местной вертикалью и тем направлением, под которым он видит определенную звезду.


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.