Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - [168]

Шрифт
Интервал

не просто RT/V, а RT/V — a/V>2, где а — постоянная[230].

Закон PV = RT превращается в

(P + a/V>2)∙(Vb) = RT

Это уточненный газовый закон, называемый законом Ван дер Ваальса. (Соответствующие графики приведены на фиг. 110.)

Новая формула достаточно хорошо описывает поведение реальных газов, предсказывая отклонения от закона Бойля в обширной области давлений вплоть до тысяч атмосфер и даже ниже критической температуры. Она сводится к старой записи, когда V велико, например для воздуха при атмосферном давлении или ниже. (Хороший пример принципа соответствия Бора: новая теория должна сводиться к старой в пределе, когда новые условия оказываются несущественными.)

Это хорошая теория. Добавление реальных предположений приводит к более общим выводам. Мы можем сверить данные опыта с новым законом и найти для каждого газа величины а и Ь. Затем можно воспользоваться этим законом и привести показания газового термометра к идеальной газовой шкале. Величина Ь позволяет оценить диаметр молекул. А когда газ превращается в жидкость, поправка a/V>2 намного превышает обычное давление и возникает поверхностное натяжение, удерживающее жидкость в капле.


Разумное применение теории

Используя манометр Мак-Леода, мы доверяем закону Бойля. Но откуда же известно, что закон Бойля справедлив при очень низком давлении, вдали от той области, где его можно экспериментально проверить? Чтобы гарантировать это, нужно измерять Р и V вплоть до этих давлений. Но как измерить Р? Ведь не барометром же Мак-Леода! Для этого мы обращаемся к кинетической теории газов и спрашиваем, можно ли доверять закону Бойля?

Обычно экстраполировать теорию очень рискованно, но здесь теория дает мудрый ответ: «Если и существует область, где можно пренебречь размером молекул и их притяжением и где должен быть справедлив простой закон, то где, как не при очень низких давлениях можно положиться на закон Бойля». Это необычный случай, когда теория сама гарантирует свою экстраполяцию с с большой точностью.


Можно ли сжать газ до жидкости?

Как делают жидкий воздух? Не просто сжатием. Даже если мы сожмем газ так, что он будет столь же плотным, что и жидкость, он по-прежнему будет занимать весь сосуд. Кажется, что его молекулы неспособны собраться в жидкость. Однако если мы охладим газ ниже критической температуры, то при сжатии он сможет превратиться в жидкость. Если же его охладить, а для сжижения сжать недостаточно, он по-прежнему будет вести себя как газ, который называют паром. Пар можно превратить в жидкость простым сжатием, но, чтобы превратить в жидкость истинный газ, следует сперва охладить его ниже критической температуры и сжать (продолжая при конденсации отбирать тепло). При наличии достаточного места любая жидкость превращается в пар.

Таким образом, каждое вещество характеризуется определенной критической температурой, выше которой оно — несжижаемый газ, а ниже — либо пар, либо пар + жидкость, либо жидкость в зависимости от давления. Комнатная температура для большинства газов значительно выше их критической температуры, а для всех жидкостей, — разумеется, ниже ее. Азот — это газ, водяной пар — это пар, ртуть — это жидкость, а свинец — это твердое тело. На Солнце все они были бы газами, на Нептуне — твердыми телами.

Критическая температура воздуха равна —140 °C, гелия — всего лишь несколько градусов выше абсолютного нуля, воды — около +365 °C, углекислого газа 31 °C. В обычные нежаркие дни огнетушитель, скажем, на >3/>4 заполнен жидким СО>2, над которым находится пар[231]. В очень жаркие дни граница жидкости исчезает и вся она превращается в пар. Это превращение можно наблюдать в стеклянной трубке (фиг. 108). При повышении температуры жидкость сильно расширяется, становясь менее плотной, тогда как плотность пара растет. Затем граница исчезает, но появляется вновь при охлаждении после внезапного «проливного дождя» капель жидкости. Хотя это и опасный опыт, но происходящие в нем изменения восхитительны.

Мы еще вернемся к проблеме критической температуры после того, как расскажем о молекулярной картине испарения.



Фиг. 108.Критическая температура.

>Стеклянная трубка с жидкостью и паром нагревается. 


Закон Бойля и СО>2

Вернитесь к фиг. 3 (стр. 331), на которой даны графики зависимости Р от V для воздуха. Углекислый газ проявляет ярко выраженные особенности, а при достаточно низкой температуре (ниже критической) они обнаружатся у любого газа. На фиг. 109 проводится сравнение между поведением воздуха и СО>2.



Фиг. 109.Сравнение поведения углекислого газа с воздухом.

>Графики представляют собой экспериментальные изотермы (зависимость давления от объема при постоянной >температуре).


Выше 31 °C СО>2 — газ, и когда температура становится гораздо выше критической, он достаточно хорошо подчиняется закону Бойля. При любой температуре ниже 31 °C при увеличении сжатия он превращается из ненасыщенного пара в насыщенный пар+жидкость, а затем в жидкость. Ненасыщенный пар при низких давлениях приближенно подчиняется закону Бойля. Во время сжижения давление остается постоянным (равным давлению насыщенного пара). Сжать жидкость, конечно, трудно, поэтому для нее кривые на графике


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.