Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - [169]

Шрифт
Интервал

резко взмывают вверх.

Таким образом, изотермы ниже критической температуры далеки от простых гипербол (PV — постоянно). Тем не менее усовершенствованный газовый закон Ван дер Ваальса достаточно хорошо описывает их. Об этом говорит фиг. 110, на которой для газа выбраны подходящие значения параметров а и b. В промежуточной части экспериментальной кривой (область сжижения) предсказания теории расходятся с экспериментом, но предсказываемое теорией поведение системы неустойчиво и его трудно обнаружить экспериментально.



Фиг. 110.Изотермы, предсказываемые модифицированным законом Ван дер Ваальса.

>Сплошными линиями показаны РV-зависимости при различных температурах. Пунктирные линии показывают места, где поведение реальных веществ отличается от предсказаний. 


Жидкость и пар

Молекулы в жидкости тесно прижаты друг к другу (вспомните, что жидкость несжимаема). Тем не менее ее молекулы должны двигаться, по-видимому, с той же долей кинетической энергии, которая предписывается газам законом равномерного распределения. В открытом блюдце жидкость медленно исчезает, превращаясь в невидимый пар, если же поместить жидкость в закрытую бутылку, испарение вскоре прекратится. В этом случае пар и молекулы воздуха находятся вверху, жидкость — внизу, температура стеклянных стенок вокруг них одна и та же. Возможно, между ними существует равномерное распределение — одна и та же кинетическая энергия у всех компонент: молекул пара (и воздуха), молекул жидкости при их коротких перебежках между соударениями и двойная доля (кинетическая энергия + потенциальная энергия) у каждой из дрожащих молекул стекла бутылки. Для молекул газа или пара стекло — не гладкая стена, а дрожащий строй колеблющихся атомов, которые при бомбардировке отдают все, что получают. Вот почему молекулы газа отражаются от твердых стенок с той же скоростью и кинетической энергией, а от горячих стенок — с большей. Поверхность жидкости для молекул газа — тоже не зеркальная гладь, а бурлящая агрессивно настроенная среда, из которой временами вылетают молекулы пара.


Испарение

Испарение — это отрыв молекул от своих соседей на поверхности жидкости. Задача 11 показывает, что испарение должно сопровождаться охлаждением.


Задача 11. Испарение

а) Какие экспериментальные факты свидетельствуют о притяжении молекул жидкости друг к другу?

б) Какие экспериментальные факты подтверждают, что в газах молекулы очень слабо притягиваются друг к другу (если вообще притягиваются)?

в) 1) Изобразите испаряющуюся с поверхности жидкости молекулу, которая притягивается своими соседями с помощью короткодействующих (в несколько молекулярных диаметров) сил;

2) нарисуйте равнодействующую этого притяжения для молекулы, которая только что покинула поверхность;

3) большинству молекул, которые хотят оторваться, сделать это не удается из-за недостатка кинетической энергии; они напоминают брошенный вверх мяч, который пытается оторваться от Земли. Что происходит с такими молекулами? Изобразите путь некоторых из них.

г) Если молекула оторвалась, она совершает работу против равнодействующей сил притяжения, превращая часть своего запаса кинетической энергии в потенциальную энергию (запасенную в поле сил молекул). Кинетическая энергия большинства молекул меньше необходимой для полного отрыва, т. в. средней кинетической энергии недостаточно для отрыва. Только некоторые из молекул с кинетической энергией выше средней могут оторваться полностью. Что тогда происходит со средней кинетической энергией молекул, оставшихся в жидкости?

д) Рассматривая теплосодержание как кинетическую энергию молекул, объясните, что происходит с оставшейся жидкостью после испарения части молекул?

е) Почему некоторые молекулы, движутся сверхбыстро? Что это — особый вид молекул? Или это своего рода аристократы в мире молекул?


Задача 12. Испарение и температура

При повышении температуры жидкости средняя кинетическая энергия молекул возрастает и большая доля молекул будет обладать энергией, достаточной для отрыва.

а) Как, по вашему мнению, это повлияет на скорость испарения?

б) Если бы мы могли увеличить температуру настолько, что даже средней кинетической энергии молекул уже било бы достаточно для отрыва, что тогда произошло бы, по вашему мнению? (Над этим стоит поломать голову. «Кипение» — неправильный ответ.)


Насыщенный пар

При испарении жидкости в закрытой бутылке пары достигают стадии «насыщения», когда молекулы возвращаются в жидкость с той же быстротой, с какой покидают ее. Это «динамическое равновесие» поддерживает определенное давление насыщенного пара.

С увеличением температуры давление сильно возрастает. При наличии воздуха жидкость испаряется очень медленно. Конечно, молекулы воздуха не могут удержать молекулы жидкости от испарения, но они нападают на «эмигрантов» и загоняют их назад в жидкость. Таким образом, воздух замедляет процесс насыщения, но не меняет окончательного давления.



Фиг. 111. Испарение и насыщенный пар.


Что создает хорошее самочувствие

Охлаждение при испарении — свойство, жизненно необходимое для поддержания постоянной температуры нашего тела. Когда мы деятельны и сжигаем топливо — пищу, то 75 % энергии выделяется в виде тепла. Мы должны избавиться от него, иначе температура нашего тела будет повышаться и мы будем чувствовать себя плохо. Воздух медленно уносит тепло, но испарение с влажной кожи поглощает его очень быстро. Катящийся градом со лба пот не приносит ничего приятного, но пот, испаряющийся в сухом воздухе, охлаждает и облегчает ваше состояние. (Охлаждение в холодильниках также достигается испарением жидкости.)


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.