Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - [163]

Шрифт
Интервал

1) Изменение объема. Расстояние между молекулами воздуха. На сколько в среднем молекулы воздуха удалены от своих соседей? Чтобы поставить вопрос в более определенной форме, предположим, что мы на мгновение как-то разметили молекулы воздуха и навели среди них порядок, скажем посадили каждую молекулу в отдельный кубик с ребром длиной D, причем расположение этих кубиков регулярно. Тогда можно утверждать, что D — это «средняя удаленность» молекул воздуха.



Фиг. 98. Расстояние между молекулами в газе.


Мы считаем, что в жидком воздухе молекул столько, что они «касаются» друг друга, причем расстояние между центрами равно среднему диаметру молекул d. Жидкости плотны и текучи, они почти несжимаемы, и их молекулы должны быть тесно прижаты друг к другу; молекулы жидкости не «закреплены» жестко, как в «узлах» кристаллической решетки твердого тела, но и не разлетаются, как молекулы газа. Мы предполагаем, что молекулы жидкого воздуха размещаются в кубических ячейках, каждая с ребром d и объемом d>3. (Это не самая плотная из возможных упаковок, она еще оставляет место для текучести.) Затем, когда жидкость превращается в газ, d превращается в D, а объем каждой ячейки возрастает от d>3 до D>3. Это изменение объема должно быть одинаковым как для одной молекулы, так и для всей массы воздуха. Не составляет труда измерить его. Наполним небольшую известного объема колбочку жидким воздухом. Затем быстро прикрепим к ее горлышку гибкую пластмассовую трубку. Другой конец трубки погрузим под воду, над которой помещен большой перевернутый вверх дном сосуд. Жидкий воздух в колбочке закипает, превращается в газообразный, его пузыри поднимаются вверх, собираются в сосуде, и измеряется объем.



Фиг. 99.От газа к жидкости.


Пример.

20 см>3 жидкого воздуха превращаются в 15000 см>3 обычного воздуха при комнатной температуре и атмосферном давлении. Следовательно,

D>3/d>3 = 15000/20 = 750, а D/p = (750)>1/3 ~= 9 (с точностью до 1 %)

Среднее расстояние между молекулами воздуха равно стороне кубика, содержащего одну молекулу, т. е. D ~= 9d. При атмосферном давлении молекулы воздуха удалены друг от друга на 9 или 10 диаметров. Это дает представление о количестве пустого места в газе и указывает на то, что наличие размеров молекул не очень мешает нашим простым теоретическим предсказаниям.


Задача 9

На сколько диаметров удалены друг от друга молекулы в цилиндре с воздухом, сжатом до 125 атм? (Указание. При расстоянии >10/>125 диаметра молекулы еще не напоминают сельдей в бочке.)


2) Средняя длина свободного пробега. Сколько в среднем пролетает молекула между последовательными соударениями? Это расстояние, называемое средней длиной свободного пробега, не совпадает с расстоянием D. Если бы молекулы были точечными, они пролетали бы друг мимо друга, совершенно не сталкиваясь. Чем «толще» молекулы, тем большую мишень подставляют они под удар движущимся соседям, тем чаще происходят соударения.

Длину свободного пробега можно оценить, используя в качестве «метки» видимые пары брома. Повторим демонстрацию диффузии брома в сосуде c воздухом (см. фиг. 10, стр. 351), отмечая скорость продвижения бурых паров. Пустим секундомер в момент, когда жидкий бром выпускался на дно высокой трубки. Спустя некоторое время, скажем 500 сек, измерим среднее расстояние, на которое пары брома поднялись вверх. Для этого нужно решить, где смесь брома и воздуха в трубке выглядит «полубурой», т. е. вдвое более светлой; чем «совершенно бурый» газ непосредственно над жидким бромом, и измерить высоту этого места над поверхностью жидкости. Это, очевидно, приближенная и субъективная оценка, но если каждый наблюдающий опыт в аудитории сделает свою оценку, отклонение вряд ли превысит 10 % от средней высоты. Каждая молекула брома достигает своего конечного положения в результате огромного числа шагов «случайных блужданий»[221]. Чтобы воспользоваться оценкой высоты «полупобурения», нужна помощь статистики. Нам необходимо выражение для среднего продвижения при большом числе последовательных шагов длиной L в хаотических направлениях. Эта проблема называется задачей о «случайных блужданиях» (ее называют еще задачей о «пути пьяницы», the drunkard's walk). Согласно статистическим исследованиям, это число равно √N, а ниже показано, как получить его в случае двух измерений. Все это справедливо и для трех измерений и полезно в некоторых физических задачах, таких, как выход фотонов из недр Солнца, диффузия нейтронов в «замедлителе» реактора, звучание поющего хора, а следовательно, и преимущество «согласованных» (когерентных) световых волн лазеров по сравнению со светом от горячего пламени или газа, где атомы «поют как нестройный хор».



Фиг. 100.Средний свободный пробег молекулы газа.

>При атмосферном давлении средний свободный пробег гораздо больше расстояния D (Заштрихованная трубка показывает объем, заполняемый одной молекулой, движущейся среди остальных.)


Представьте себе случайное блуждание молекулы брома, мечущейся от столкновения к столкновению в толпе молекул воздуха. Мы считаем, что все ее прыжки имеют одинаковую длину, равную среднему свободному пробегу


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.