Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - [151]

Шрифт
Интервал

.

Если математикам «дать» Солнце и планету при некотором начальном условии, то они смогут предсказать орбиту планеты. Один из наиболее простых способов — это написать уравнение, исходя из того, что сумма (кинетическая энергия) + (потенциальная энергия) (в изменяющемся гравитационном поле Солнца) вдоль орбиты остается постоянной. В комбинации с уравнением для другой сохраняющейся величины (например, момента количества движения) это приведет к уравнению для орбиты, т. е. к эллипсу[202].

Хотя закон сохранения энергии полезен, до сих пор он вряд ли был всеобщим. Включение же теплоты, химической энергии и др. в одну грандиозную схему привело к перерастанию его в важнейший закон.


Теплота как форма энергии

Лукреций (~ 80 г. до н. э.) так описывал взгляды греческих философов, живших за несколько веков до него[203]:

«… телам изначальным, конечно,
Вовсе покоя нигде не дано в пустоте необъятной.
Наоборот: непрерывно гонимые разным движеньем,
Частью далеко они отлетают, столкнувшись друг с другом,
Частью ж расходятся врозь на короткие лишь расстоянья.
Тех, у которых тесней их взаимная сплоченность, мало,
И на ничтожные лишь расстоянья прядая порознь,
Сложностью самых фигур своих спутанны будучи цепко,
Мощные корни камней и тела образуют железа
Стойкого, так же, как все остальное подобного рода.
Прочие в малом числе, в пустоте необъятной витая,
Прядают прочь далеко и далеко назад отбегают
На промежуток большой. Из них составляется редкий
Воздух…»

Воззрения греческих атомистов в течение многих веков либо предавались забвению, либо преследовались. Их идеи были возрождены только во времена Галилея. Причудливую теорию атомов строил Декарт, а Ньютон размышлял над теплотой как движением атомов. Философы последующего века создали грандиозные схемы применения могучей механики Ньютона к декартовым атомам. Они считали, что, задав положение и движение всех атомов, можно предсказать все, что произойдет в будущем. Но атомная картина все еще оставалась в рамках заумных рассуждений, а связь между теплотой и «атомным» движением была лишь внешней.


«Теплород»

В течение долгого времени после Ньютона представление о теплоте продолжало оставаться не слишком ясным. Примерно в 1750 г. Джозеф Блейк провел четкую грань между количеством тепла и температурой. Он измерял количество тепла, нагревая воду или растапливая лед. В последнем случае не требуется даже термометра — теплота измеряется по массе растаявшего льда. Он определил величину, которую мы теперь называем «удельной теплоемкостью», и построил теорию теплоты как некой жидкости, которая без потерь может перетекать из горячих тел в холодные. Даже когда кажется, что теплота исчезает при плавлении или испарении, она прячется в виде «скрытой теплоты», которая может быть выделена при обратном переходе.

Эта «жидкость» вскоре была названа флогистоном, или «теплородом». Нагревание тел означало наполнение пространства между атомами теплородом и увеличение его давления. Считалось, что между «атомами» воды, обладающей большой теплоемкостью, имеется много-свободного места. А в свинце с его малой теплоемкостью места для теплорода должно быть мало, небольшого количества его хватает, чтобы наполнить промежутки до высокой температуры. Было много споров о весе теплорода. Некоторые считали, что он обладает весом, другие же, убедившись в том, что нагретые тела легче, приписывали ему отрицательный вес. Наконец, Румфорд взвесил некое количество льда, нагрел его, пока не превратил в теплую воду, вновь взвесил и перемен не обнаружил. Однако это не опровергало существования теплорода, а лишь указывало на интересное его свойство — невесомость. К 1800 г. теория теплорода казалась хорошо экспериментально обоснованной. Она позволяла легко разбираться в нагревании, охлаждении, плавлении, испарении. Она объясняла даже расширение при нагревании: теплород раздвигал атомы, действуя на них силовыми полями, подобными тем, которые сейчас так популярны в атомной физике. Она с легкостью объясняла также нагревание вещества при трении. Соскальзывая вниз по канату, матрос выжимает из него теплород — говорили приверженцы теплорода? Они могли почти нарисовать картину, как руки человека выжимают теплоту из промежутков между атомами каната, подобно воде из мокрой губки. Но почему же теплород не возвращался обратно, когда матрос отпускал канат? «Да, не возвращается» — таков, по-видимому, был первый ответ. Разумеется, он не возвращается, ибо натертые предметы остаются горячими довольно долго и медленно передают тепло своему окружению. Суть дела в том, — следовали подробные объяснения, — что трение сдавливает канат, уменьшая в нем пространство для теплорода. Таким образом, теплород выжимается и обжигает человеку руки. Это изменение необратимо — в канате остается меньше места для теплорода.

Меньше места для теплорода? Но при атом сдавленный канат должен иметь и меньшую удельную теплоемкость. Это могло бы послужить решающей проверкой теплородной точки зрения. Эксперименты не обнаружили каких-либо изменений, хотя многие приверженцы теплорода цеплялись за свою точку зрения. Они, по-видимому, оправдывались тем, что выжимается лишь малая доля всего теплорода, поэтому изменения удельной теплоемкости должны быть очень малыми. В то время как Блейк и другие уточняли и улучшали измерения, все с большей настойчивостью выдвигалось другое объяснение теплоты — как энергии молекулярного движения.


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.