Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия - [127]

Шрифт
Интервал

). Для нагревания воды массы М на ΔТ° С требуется М∙ΔТ Кал. А в случае свинца потребуется теплоты в 0,03 раза больше, или М∙ΔТ∙(0,03) Кал

Предположим, что вся кинетическая энергия пули превратится в теплоту

>1/>2 mv>2 >1/>2∙(0,006)∙(400>2) = (0,006)∙80 000 дж.

Если повышение температуры (ΔТ) равно ΔТ° С, то поглощенное свинцом количество тепла равно

(МАССА)∙(ПОВЫШЕНИЕ ТЕМПЕРАТУРЫ)∙(УДЕЛЬНАЯ ТЕПЛОЕМКОСТЬ) =

= (0,006)∙(ΔТ)∙(0,03) Кал =

= (0,006)∙(ΔТ)∙(0,03)∙(4200) дж

Если вся кинетическая энергия переходит в теплоту и если вся теплота остается в свинце, то (0,006)∙(80 000) дж должны быть равны (0,006)∙(ΔТ)∙(0,03)∙(4200) дж. Сокращая на массу пули, 0,006 (кстати, почему она должна сократиться?) и разрешая относительно ΔТ, получаем

ΔТ = 80 000/(0,03)∙(4200) = 635 °C

Как и многие ответы к задачам в учебниках, и этот ответ далек от реальности, ибо такое повышение температуры привело бы к плавлению свинца, а в реальном соударении часть теплоты передается стенке.


Замкнутые системы

Любые законы сохранения энергии, импульса, воды, денег… должны иметь дело с «замкнутой системой». Мы проводим вокруг рассматриваемой области мысленную границу, и должны быть уверены, что ни одна из сохраняющихся величин не пересекает этой границы. Тогда, утверждая, что нечто сохраняется, мы имеем в виду, что в пределах этой границы оно не может быть ни создано, ни уничтожено (не считая равных количеств положительного и отрицательного) и возможен лишь обмен. Доведенное до предела, это требование вынуждает нас в качестве замкнутой системы брать всю Вселенную, но в большинстве случаев даже небольшая совокупность тел или частиц оказывается практически замкнутой системой.

Вряд ли можно доказать закон сохранения денег для отдельного человека или для отдельного города. В каждом из этих случаев система не замкнута: деньги постоянно обращаются — текут то туда, то сюда. Однако можно обнаружить «закон сохранения денег» на небольшом острове. Требование замкнутости кажется достаточно очевидным, забыв о нем, можно прийти к парадоксам. Стреляющее ружье не составляет замкнутой системы ни с точки зрения количества движения (импульса), ни с точки зрения энергии — и то, и другое возрастает. Но если ружье поставить на колеса, то ружье + пуля + газы образует практически замкнутую систему в отношении количества движения: все они получают равные, но противоположные количества движения, а полное количество движения системы остается неизменным. Для энергии нам нужно взять ружье + порох + пулю; только тогда можно рассчитывать на ее сохранение.


Сохранение механической энергии: Е>потЕ>кин = const

Предположим, что у нас есть замкнутая система с точки зрения энергии, т. е. таких сил, которые бы вносили и уносили энергию через границу, нет. Результирующая сил, действующих на систему извне, должна быть равна нулю. Все внутренние силы должны распадаться на пары: F>1 и — F>1F>2 и — F>2 и т. д. (третий закон Ньютона). Разлагая силы на подходящие компоненты и умножая их на пройденное расстояние, мы можем для любых изменений внутри системы вычислить передачу энергии. Для этого требуется досконально изучить геометрию системы и понимать, что силы — это векторы и действуют они независимо друг от друга. Здесь мы не будем вдаваться в подробности, но если все силы подобны упругим или силе тяжести, то они приведут к равным, противоположным переходам между различными сортами кинетической и потенциальной энергий. Рассуждения, однако, становятся несправедливыми, если встречаются силы, подобные трению, которые противятся всякому скольжению (т. е. не похожи на пружину, которая противится движению в одну сторону и помогает в другую). Если вы тащите камень без трения вверх по склону из точки А в точку В, то прирост потенциальной энергии будет одинаков для прямого пути из А в В в для окольного. Но на шероховатом склоне чем длиннее путь, тем больше энергии переходит в теплоту. Таким образом, существенная особенность, позволяющая утверждать, что сумма потенциальной и кинетической энергий постоянна, состоит в следующем:

Потенциальная энергия зависит только от положения концов пружины, тела в поле сипы тяжести и т. п. Изменение потенциальной энергии не зависит от выбранного пути.

Кинетическая энергия зависит только от скорости, но не от пути или времени, требуемого для ее достижения.


Мощное средство

Постоянство суммы кинетической и потенциальной энергий избавляет нас от многих вычислений. Для «консервативных систем», у которых отсутствует трение, на некоторые вопросы можно ответить, не вычисляя внутренние силы. Например, маятник длиной 5 м с гирей массой 4 кг отклонили на 4 м по горизонтали и отпустили. Какова будет скорость гири в низшей точке?



Фиг. 59.


Маятник напоминает тело, скатывающееся по наклонной плоскости с переменным наклоном. Ускоряющая сила постоянно изменяется, и чтобы получить ответ сложением всех приращений скорости, пришлось бы немало потрудиться. Однако сохранение энергии позволяет найти его очень быстро:

(КИНЕТИЧЕСКАЯ ЭНЕРГИЯ + ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ в начальной точке) = (КИНЕТИЧЕСКАЯ ЭНЕРГИЯ + ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ в низшей точке) = 0 + (4 кГ)∙(9,8 ньютон/кГ)∙(2 м) =


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.