Физика для любознательных. Том 1. Материя. Движение. Сила - [95]

Шрифт
Интервал

(фиг. 184). Какую силу вы ощущаете? С какой силой вы действуете на груз? Какое воздействие оказывает на груз приложенная к нему сила притяжения Земли?



Фиг. 184. Как почувствовать малую долю веса.


3) Опускайте руку с ускорением, направленным вниз и близким к >1/>2g.

Какое воздействие теперь оказывает на груз приложенная к нему сила земного притяжения? Какую силу вы ощущаете теперь? (Это, разумеется, повторение приведенного выше рассмотрения в более простой форме, но если начать с предельного случая ускорения g, то легче понять результат рассуждений.)

4) Повторите первое и второе рассуждения для случая, когда в руке держат веревку, к которой подвешен груз 2 кг.


Задача 11. Потеря натяжения

а) Грузы массой, 2 и 1 кг подвешена к концам бечевки, перекинутой через легкий блок, в котором отсутствует трение (фиг. 185). Если задержать блок и одновременно прижать к нему бечевку, чтобы не было никакого движения, то натяжение бечевки слева будет 9,8 ньютон (или 1 кГ), а справа 19,6 ньютон. Если отпустить бечевку и блок, то грузи начнут двигаться с ускорением.



Фиг. 185.


1) Каким образом совершает ускоренное движение правый груз массой 2 кг?

Будет ли натяжение бечевки, к которой он подвешен, таким же, как и раньше? Большим, меньшим? Почему?

2) Будет ли натяжение бечевки, к которой подвешен груз массой 1 кг, таким же, как раньше? Большим, меньшим? Почему?

3) Предположим, что трение в блоке отсутствует и масса блока равна нулю.

Как вы, думаете, какое соотношение должно в этом случае существовать между натяжениями бечевки по обеим сторонам блока, если предоставить системе возможность свободно двигаться?

б) Вычислите ускорение и натяжение нити в схеме, изображенной на фиг. 186. Трением можно пренебречь.



Фиг. 186.


в) Вычислите ускорение и натяжение нити в схеме, изображенной на фиг. 187. Трением можно пренебречь.




Фиг. 187.


Ньютоновы законы движения

Представления, которые мы здесь развивали, сформулированы Ньютоном в его законах движения. В современной редакции они выглядят следующим образом:

ПЕРВЫЙ ЗАКОН.

Всякое тело, будучи предоставлено самому себе (при отсутствии внешних сил), сохраняет состояние покоя или равномерного прямолинейного движения.


ВТОРОЙ ЗАКОН.

Действующая на тело внешняя сила равна произведению массы тела на его ускорение. (Позже мы увидим, что первоначальный вариант Ньютона, в котором второй закон формулируется через количество движения, лучше.)


ТРЕТИЙ ЗАКОН.

Действие равно противодействию. (Это утверждение будет рассмотрено в гл. 8.)


Даже после демонстрационных опытов и всех этих рассуждений формулировки первого и второго законов Ньютона могут показаться странными и нереальными. Дело в том, что опущено слово «результирующая». Под внешней силой следует понимать результирующую силу. Первый и второй законы Ньютона приобретают истинный смысл, если в них ввести слово «результирующая». Тогда эти законы формулируются следующим образом:

Если на тело не действует никакая результирующая сила, оно сохраняет свое состояние движения, и

РЕЗУЛЬТИРУЮЩАЯ СИЛА = МАССА∙УСКОРЕНИЕ.

Ньютон сформулировал эти положения о силе и движения, когда писал свой замечательный трактат по механике и астрономии. Он в известном смысле проверил их на Луне и планетах, а мы отважились распространить эти принципы на молекулы, атомы, а теперь и на составные части атомов.

В большинстве элементарных учебников законы Ньютона излагаются формально в самом начале главы, а не в конце — как естественное обобщение изложенного. Авторы учебников возвещают об этих законах с такой решительностью, что учащимся кажется, будто Ньютон узнал о них от самого бога. В действительности же Ньютон просто по-новому сформулировал взгляды Галилея и других исследователей, которые изучали движение экспериментально и размышляли над ним. Ньютон изложил их в виде рабочих правил, частью основанных на эксперименте, а частью представляющих собой определение и разъяснение терминов. Ученые и по сей день расходятся во взглядах на законы Ньютона. Прямые последователи Ньютона, по-видимому, считали его законы просто обобщениями опытных данных, выведенными в процессе познания реального мира, подобно закону Гука. Сегодня мы более осторожны и рассматриваем первый закон Ньютона главным образом как определение силы, а второй закон — как определение…>(текст нечитаем)… измерения силы. Говоря о втором законе Ньютона…>(текст нечитаем)…что сила равна произведению массы на ускорение, мы считаем…>(текст нечитаем)…массы интуитивно очевидным. Но некоторые энтузиасты идут еще дальше и утверждают, что законы эти представляет собой лишь определения или некие условия и не имеют никакого отношения к познанию на опыте реального мира. Это — заблуждение, чтобы не сказать — глупость. Мы, несомненно, могли бы вообразить Вселенную, в которой поведение движущихся тел не описывалось бы законами Ньютона. Пожалуй, лучше всего по этому поводу говорит один из самых выдающихся математиков и физиков Пуанкаре[116] в своей книге La Science et l'Hypothèse[117]:

«Мы увидим, что есть несколько типов гипотез, причем одни из них допускают проверку и после своего подтверждения на опыте становятся плодотворными истинами; другие могут быть полезны тем, что придают нашей мысли резкие и определенные очертания, и третьи, наконец, являются гипотезами только по внешности и сводятся или к простым определениям, или к замаскированным условиям. Гипотезы последнего типа встречаются особенно часто в математике и в науках, соприкасающихся с последней. Свойствами этих гипотез как раз и обусловливается присущая математическим наукам строгость; такие условия являются созданием свободного творчества вашего разума, который в данной области не знает никаких препятствий. Тут он может диктовать, так как он же и делает себе предписания. Но мы должны отчетливо уяснить, что, хотя эти предписания имеют значение для нашего научного познания, которое без них было бы невозможно, они не имеют значения для природы. Следует ли отсюда, что предписания эти произвольны? Нет, не следует, ибо тогда они были бы совершенно бесплодны. Опыт дает нам свободу выбора, но он руководит последним, помогая нам распознать самый удобный путь. Таким образом, предписания нашего разума подобны велениям самодержавного, но мудрого монарха, который, прежде чем принять решение, предварительно запрашивает мнение своего Государственного совета… Не являются ли закон ускорения


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.