Физика для любознательных. Том 1. Материя. Движение. Сила - [85]

Шрифт
Интервал

Формулируя представление о массе при помощи таких туманных описаний, как количество материи, мера трудности ускорения движения, «инертность вещества» и т. д., или при помощи определения

МАССА = СИЛА / УСКОРЕНИЕ,

которое кажется ясным и недвусмысленным, мы считаем, что определяем некое универсальное неизменное свойство всех видов вещества, нечто существующее столь же вечно, как и сама материя.


Масса и вес

Как велико земное притяжение, действующее на разные массы? Как сравнивать веса двух предметов? Возьмем два одинаковых куска свинца, скажем по 1 кг каждый. Земля притягивает каждый из них с одинаковой силой, равной весу 1 кг. Если мы соединим оба куска в 2 кг, то вертикальные силы просто складываются: Земля притягивает 2 кг вдвое сильнее, чем 1 кг. Мы получим точно такое же удвоенное притяжение, если сплавим оба куска в один или поместим их один на другой. Гравитационные притяжения любого однородного материала просто складываются, и нет ни поглощения, ни экранирования одного куска вещества другим[102].

Для любого однородного материала (вес) ~ (масса). Поэтому мы считаем, что Земля является источником «поля силы тяжести», исходящего из ее центра по вертикали и способного притягивать любой кусок вещества. Поле силы тяжести воздействует одинаково, скажем, на каждый килограмм свинца. А как обстоит дело с силами притяжения, действующими на одинаковые массы разных материалов, например 1 кг свинца и 1 кг алюминия? Ответ, точнее, смысл вопроса, зависит от того, что мы понимаем под одинаковыми массами.

Сравнение масс двух предметов путем измерения ускорения (например, вагончика на рельсовом пути) представляет собой сложное и утомительное занятие, но его можно осуществить, после чего можно сравнить веса этих масс на пружинных весах. Однако вы хорошо знаете, что наиболее простой способ сравнения масс, которым пользуются в научных исследованиях и в торговой практике, — это применение рычажных весов. В них сравниваются силы, которые тянут оба груза, и метод совершенно правильно называют «взвешиванием». Но, получив путем взвешивания одинаковые массы, скажем свинца и алюминия, мы предполагаем, что равные веса имеют равные массы. Никакой дальнейший эксперимент по измерению сил не может дать ответа на наш вопрос относительно массы и веса; по-видимому, здесь мы рискуем оказаться в замкнутом кругу. Фактически мы говорим о двух совершенно разных видах массы — об инертной и о гравитационной массе. Их различие содержит важнейший момент общей теории относительности. Однако в период от Ньютона до Эйнштейна это различие казалось несущественным, о нем не имели представления; поэтому изучение массы, движения, силы, веса и тяготения стало более трудным и запутанным даже в рамках элементарного курса физики. Мы рассмотрим оба вида массы, присвоив им символы М° и М>+.


Два вида массы



Фиг. 157. Два вида массы,

>а — инертные; б — гравитационные.


Инертная масса. Величина М в формуле F = K∙Mа представляет собой инертную массу. В опытах с тележками, которым придают ускорение пружины, величина М выступает как характеристика «тяжеловесности вещества», показывающая, насколько трудно сообщить ускорение рассматриваемому телу. Количественной характеристикой служит отношение F/a. Эта масса представляет собой меру инертности, тенденции механических систем сопротивляться изменению состояния. Мы называем ее «инертной массой» и обозначаем символом М°. Если ограничиться од ним химическим элементом, то одну массу М° можно сравнивать с другой или с эталоном в 1 кг° путем подсчета атомов. (Сегодня мы умеем считать атомы, но даже самому быстродействующему счетчику Гейгера, если бы он работал днем и ночью, потребовались бы миллиарды лет, чтобы непосредственно пересчитать атомы в одном килограмме вещества.) Если подходить с более реальных позиций, то мы можем сравнивать массы° по аналогии с определением величины М°, т. е. посредством измерения ускорения и силы. Например, мы прикладываем некоторую стандартную силу, скажем пружины, к тележке, находящейся на горизонтальном рельсовом пути без трения, как показано на фиг. 160 (стр. 267):

а) к пустой тележке неизвестной массы [M>0°];

б) к тележке + эталон 1 кг°, [M>0°+ 1°];

в) к тележке + масса М°, которую нужно измерить, [M>0°+ M°].


Мы измеряем в каждом случае ускорение, создаваемое силой F = K∙M°∙а, и, воспользовавшись правилами алгебры, находим значение М°/1 кг°, которое представляет собой массу М°, выраженную в килограммах[103].

Это долгий путь, которым редко пользуются, и то, пожалуй, только мысленно, с целью выяснить смысл массы°. Мы опишем более практичный подход к определению массы, но и он годится лишь для демонстрации принципа. До сих пор в наших рассуждениях не было прямой связи между инертной массой и тяготением.

Масса° — это свойство, которое должно быть одним и тем же и вблизи поверхности Земли, и на Луне, и в далеком космосе, и в центре Земли. Какова ее связь с тяготением и что на самом деле происходит при взвешивании?

Гравитационная масса. Совершенно независимо от инертной массы мы можем ввести понятие гравитационной массы как количества вещества, притягиваемые Землей.


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.