Физика для любознательных. Том 1. Материя. Движение. Сила - [84]

Шрифт
Интервал

этого груза. Ускорение свободного падения опять-таки сообщается телу его весом. К сожалению, словом «вес» пользуются в нескольких смыслах, что вносит путаницу. Поэтому мы постараемся точно изложить научный смысл слова «вес», а пока будем почаще заменять его названиями «притяжение Земли» или «земное притяжение».

В физике вес — это официальное наименование силы, которая притягивает предметы к земной поверхности, — «притяжение силы тяжести», что бы это ни означало. Мы можем, если нам это нравится, «объяснить» вес, сказав, что это притяжение Земли.

То обстоятельство, что тела притягиваются по направлению к центру Земли, делает такое объяснение разумным, но у нас нет никакой уверенности в его правильности, пока мы не изучим всемирное тяготение[100].

Как бы его ни определяли, вес — это сила. Он ничем не отличается от любой другой силы, если не считать двух особенностей: вес направлен вертикально и действует постоянно, его невозможно устранить.

Чтобы непосредственно измерить вес тела, мы должны воспользоваться пружинными весами, проградуированными в единицах силы[101]. Поскольку это зачастую сделать неудобно, мы сравниваем один вес с другим при помощи рычажных весов, т. е. находим отношение

ЗЕМНОЕ ПРИТЯЖЕНИЕ, ДЕЙСТВУЮЩЕЕ НА ТЕЛО X / ЗЕМНОЕ ПРИТЯЖЕНИЕ, ДЕЙСТВУЮЩЕЕ НА ЭТАЛОН МАССЫ

Предположим, что тело X притягивается в 3 раза сильнее, чем эталон килограмма. В этом случае мы говорим, что земное притяжение, действующее на тело X, равно 3 «килограммам силы», это означает, что оно «в 3 раза больше земного притяжения, которое действует на килограмм массы». К сожалению, это приводит к путанице между единицами массы и веса (и других сил), поскольку мы сокращенно называем и те и другие единицы «килограммом» (как следовало бы называть единицу массы). В самой деле, неразумно пользоваться одним и тем же названием для единиц измерения таких разных величин, как сила и масса. Мы еще вернемся к вопросу о выборе единиц для измерения сил.

Если мы при помощи пружинных весов измерим вес какого-нибудь предмета с очень большой точностью, а потом перенесем весы в другое место, то обнаружим, что вес предмета на поверхности Земли несколько меняется от места к месту. Мы знаем, что вдали от поверхности Земли, или в глубине земного шара, вес должен быть значительно меньше. Таким образом, единица «килограмм веса» (более употребительно наименование «килограмм силы») не только вносит путаницу при употреблении ее для измерения веса (и других сил), но и непостоянна. Мы стараемся избежать употребления переменных единиц, поэтому была изобретена более удобная единица сил (в том числе и веса). Перед тем как перейти к рассмотрению этой единицы, продолжим наше изучение массы.


«Масса НИКОГДА не меняется»

Представим себе, что мы повторяем на Луне демонстрационные опыты с вагончиками и силомерами, которые мы производили для изучения зависимости F ~ Ma. Мы подозреваем, что тяготение на Луне слабее, поэтому определенный мешочек с песком тянул бы вагончик с меньшей силой. Однако если бы пружина силомера была растянута до той же самой отметки (под действием большего мешочка с песком), то сила осталась бы той же, что и на Земле. Останется ли масса вагончика на Луне той же самой или нет?

Ученые, размышляя над этим вопросом, давно пришли к выводу, что масса должна оставаться неизменной. Даже в центре Земли, где тяготение, действуя во всех направлениях, должно давать нулевую результирующую силу, тело по-прежнему имело бы ту же самую массу. Согласно имеющимся данным, полученным в результате изучения света, идущего от звезд, нам известно, что если атомные силы в тех далеких от нас мирах такие же, как на Земле, то массы атомов там тоже такие же.

Говоря о веществе, или материи, мы имеем в виду нечто цельное и определенное, нечто остающееся неизменным, что бы мы ни делали с предметом — нагревали его, расплавляли, сжимали… даже перенесли его на Луну. Куску свинца, положенному на ролики, было бы точно так же трудно придать ускорение на Луне или в центре Земли, как и на поверхности Земли. С другой стороны, вес такого куска свинца (сила, действующая на него вниз) был бы совершенно иным (фиг. 156).



Фиг. 156. Изменение массы и веса в зависимости от места.

>Масса, оцениваемая по трудности, которую мы встречаем при попытке ускорить движение маленькой тележки, одна и та же всюду: на поверхности Земли, в центре Земли, на Луне. Вес, оцениваемый по удлинению пружинных весов (и ощущению усилия в мускулах руки человека, держащего весы), будет значительно меньше на Луне и практически равен нулю в центре Земли.


Массивное колесо (уравновешенное на подшипниках) с очень малым трением не вращается под действием своего веса, однако если мы возьмемся за обод и заставим колесо вращаться, то сразу убедимся, что оно обладает массой; по-видимому, его точно так же трудно привести во вращение на Луне или в любом другом месте. Полкилограмма шоколада, если его съесть сразу, дает не только чувство тяжести, обусловленное притяжением этого шоколада Землей, но обеспечивает, так сказать, объем и питание, и при условии такого же состояния нашего здоровья на Луне следует ожидать таких же результатов от этого же количества съеденного шоколада. Даже если бы устроили лабораторию в свободно падающем ящике, то пришли бы к выводу о неизменности масс и не заметили бы, что предметы притягиваются Землей, как обычно.


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.