Физика для любознательных. Том 1. Материя. Движение. Сила - [140]

Шрифт
Интервал

1. Запишите √Х в виде X>1/2 и примите в качестве допущения, что правило решения четвертого вопроса задачи 3 применимо и в том случае, когда n — дробное число.

2. Если множитель √Х фигурируете произведении дважды, то мы получаем √Х∙√Х, или (√Х)>2, т. е. X. Значит, ошибка в X, равная х%, дает ошибку х% в произведении. Поэтому если множитель √Х встречается только один раз, то мы полагаем, что ошибка составит… %.

>…текст не читается…

сталкиваются, например, при разделении изотопов урана для получения атомной энергии. См. задачу в гл. 30[169].)


Задача 5. Ошибки в делителях

Предположим, нам нужно вычислить частное X/Y. Если значение Y завышено на у%, то как это отразится на частном? Предположим, мы увеличили X на столько же процентов, что и Y. Тогда частное будет, равно


или X/Y, т. е. не изменится. Если знаменатель дроби завышен на у%, то эта ошибка в точности компенсирует ошибку у% в числителе, который тоже завышен. Обе ошибки дают одинаковый по величине и противоположный по знаку вклад в ошибку частного. Следовательно, если завысить на у% знаменатель дроби, то это приведет к такому же результату, как занижение на у% числителя. Значит, ошибка +у% в делителе Y приведена к ошибке частного X/Y, равной — у%. Заметьте, что это следует и из решения четвертого вопроса задачи 3.


Задача 6. Вычисление результата с несколькими множителями

Предположим, эксперимент приводит к результату


Экспериментаторы дают для своих измерений следующие ошибки в процентах:

от точного значения 126 может отличаться на ±1 %,

9,25 — на ±0,2 %,

0,0740 — на ±0,1 %,

29,62 — на ±0,2 %,

0,00521 — на ±0,1 %.

Если бы все результаты отдельных измерений были занижены на величину ошибки, то

а) числитель записанной выше дроби R был бы занижен на…?…%,

б) знаменатель дроби R был бы занижен на…?…%;

в) вследствие этого окончательный результат (R = 1530) был бы за…ен?

на…?…%.

В самом худшем случае все результаты измерений, стоящие в числителе, могут быть занижены на величину ошибки, а все результаты измерений, стоящие в знаменателе, — завышены на величину ошибки;

г) в этом случае результат будет за…ен? на…?…%.

На практике мы рассчитываем, что столь коварного заговора против нас не будет. Тем не менее результат, который получается в последнем случае, может служить серьезным предостережением.


Оценка как единственная возможность

Часто бывает необходимо прикинуть ответ, хотя нет данных для точного расчета или нет ни времени, ни возможностей использовать все данные полностью. Например, при сильном снегопаде в большом городе городские власти хотят знать, сколько человек требуется для уборки снега. Неважно, будет ли это 3219 или 3456 человек: вполне достаточно установить, что требуется 3000–4000 человек. Но эту цифру нужно получить быстро: обсуждать и уточнять, требуется ли 3119 человек или на 100 больше или на 50 меньше, не приходится — задержка повлечет большие затраты времени и денег, а может привести и к серьезной опасности.

Однако уборка снега — старая проблема, где подсчет может базироваться на опыте прошлых лет. Иногда возникают новые проблемы, требующие быстрого ответа, хотя даже исходные данные можно оценить лишь ориентировочно. Например, генерал спрашивает полковника, указывая на карту. «Сколько человек может прокормить этот район в течение месяца?» Генерала устраивает незамедлительный, пусть ненадежный ответ: «Около 7000».

Тщательное обследование и точный учет продовольствия и потребностей, включая детальное рассмотрение транспортной проблемы, могли бы дать более достоверный ответ, скажем 9250. Но необходимые данные нельзя получить, пока район не будет занят!

Еще один пример. При пересмотре налогов нужно быстро получить приближенную оценку объема импорта табака. Ошибка даже на 40 % не помешает решению задачи. Детальное изучение вопроса могло бы привести к результату, отличающемуся от истинной цифры всего на 0,1 %. Но оно было бы сопряжено с ненужной тратой средств и не имело бы ничего общего с научным подходом к проблеме. Дело в том, что этот точный результат играет лишь второстепенную роль в общем комплексе вопросов и должен учитываться совместно с другими сведениями, которые не могут быть точными.

На рубежах новых знаний приближенная оценка может оказаться главным и единственным результатом эксперимента. Тем не менее ученые могут быть очень рады такому результату[170].

Например, в раннюю эпоху развития атомной физики эксперименты позволили высказать предположение, что «атомы углерода имеют по 6 электронов». Сегодня мы знаем, что каждый нейтральный атом углерода имеет ровно 4 электрона, ну а 50 лет назад физики были рады узнать, что это число электронов близко к 6, а не к 2 или 20. Они смело приняли число электронов равным 6 и выдвинули теорию строения атомов, которая содействовала дальнейшему развитию атомной физики, направляя экспериментаторов и теоретиков по верному пути. Опытная проверка теории на основе содержащихся в ней положений подтвердила правильность этой теории и окончательно оправдала выбор числа 6 в ретроспективном плане.

Мы встречаем много задач, в которых отыскание точного ответа либо требует затраты неоправданных усилий, либо просто невозможно, но где в то же время можно удовлетвориться приближенным решением. В таких случаях не остается ничего другого, как на основе разумных предположений, требующих смекалки и работы мысли, произвести оценку, или, как говорят, «грубую прикидку».


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Чем мир держится?

В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.