Физика для любознательных. Том 1. Материя. Движение. Сила - [140]
1. Запишите √Х в виде X>1/2 и примите в качестве допущения, что правило решения четвертого вопроса задачи 3 применимо и в том случае, когда n — дробное число.
2. Если множитель √Х фигурируете произведении дважды, то мы получаем √Х∙√Х, или (√Х)>2, т. е. X. Значит, ошибка в X, равная х%, дает ошибку х% в произведении. Поэтому если множитель √Х встречается только один раз, то мы полагаем, что ошибка составит… %.
>…текст не читается…
сталкиваются, например, при разделении изотопов урана для получения атомной энергии. См. задачу в гл. 30[169].)
Задача 5. Ошибки в делителях
Предположим, нам нужно вычислить частное X/Y. Если значение Y завышено на у%, то как это отразится на частном? Предположим, мы увеличили X на столько же процентов, что и Y. Тогда частное будет, равно
или X/Y, т. е. не изменится. Если знаменатель дроби завышен на у%, то эта ошибка в точности компенсирует ошибку у% в числителе, который тоже завышен. Обе ошибки дают одинаковый по величине и противоположный по знаку вклад в ошибку частного. Следовательно, если завысить на у% знаменатель дроби, то это приведет к такому же результату, как занижение на у% числителя. Значит, ошибка +у% в делителе Y приведена к ошибке частного X/Y, равной — у%. Заметьте, что это следует и из решения четвертого вопроса задачи 3.
Задача 6. Вычисление результата с несколькими множителями
Предположим, эксперимент приводит к результату
Экспериментаторы дают для своих измерений следующие ошибки в процентах:
от точного значения 126 может отличаться на ±1 %,
9,25 — на ±0,2 %,
0,0740 — на ±0,1 %,
29,62 — на ±0,2 %,
0,00521 — на ±0,1 %.
Если бы все результаты отдельных измерений были занижены на величину ошибки, то
а) числитель записанной выше дроби R был бы занижен на…?…%,
б) знаменатель дроби R был бы занижен на…?…%;
в) вследствие этого окончательный результат (R = 1530) был бы за…ен?
на…?…%.
В самом худшем случае все результаты измерений, стоящие в числителе, могут быть занижены на величину ошибки, а все результаты измерений, стоящие в знаменателе, — завышены на величину ошибки;
г) в этом случае результат будет за…ен? на…?…%.
На практике мы рассчитываем, что столь коварного заговора против нас не будет. Тем не менее результат, который получается в последнем случае, может служить серьезным предостережением.
Оценка как единственная возможность
Часто бывает необходимо прикинуть ответ, хотя нет данных для точного расчета или нет ни времени, ни возможностей использовать все данные полностью. Например, при сильном снегопаде в большом городе городские власти хотят знать, сколько человек требуется для уборки снега. Неважно, будет ли это 3219 или 3456 человек: вполне достаточно установить, что требуется 3000–4000 человек. Но эту цифру нужно получить быстро: обсуждать и уточнять, требуется ли 3119 человек или на 100 больше или на 50 меньше, не приходится — задержка повлечет большие затраты времени и денег, а может привести и к серьезной опасности.
Однако уборка снега — старая проблема, где подсчет может базироваться на опыте прошлых лет. Иногда возникают новые проблемы, требующие быстрого ответа, хотя даже исходные данные можно оценить лишь ориентировочно. Например, генерал спрашивает полковника, указывая на карту. «Сколько человек может прокормить этот район в течение месяца?» Генерала устраивает незамедлительный, пусть ненадежный ответ: «Около 7000».
Тщательное обследование и точный учет продовольствия и потребностей, включая детальное рассмотрение транспортной проблемы, могли бы дать более достоверный ответ, скажем 9250. Но необходимые данные нельзя получить, пока район не будет занят!
Еще один пример. При пересмотре налогов нужно быстро получить приближенную оценку объема импорта табака. Ошибка даже на 40 % не помешает решению задачи. Детальное изучение вопроса могло бы привести к результату, отличающемуся от истинной цифры всего на 0,1 %. Но оно было бы сопряжено с ненужной тратой средств и не имело бы ничего общего с научным подходом к проблеме. Дело в том, что этот точный результат играет лишь второстепенную роль в общем комплексе вопросов и должен учитываться совместно с другими сведениями, которые не могут быть точными.
На рубежах новых знаний приближенная оценка может оказаться главным и единственным результатом эксперимента. Тем не менее ученые могут быть очень рады такому результату[170].
Например, в раннюю эпоху развития атомной физики эксперименты позволили высказать предположение, что «атомы углерода имеют по 6 электронов». Сегодня мы знаем, что каждый нейтральный атом углерода имеет ровно 4 электрона, ну а 50 лет назад физики были рады узнать, что это число электронов близко к 6, а не к 2 или 20. Они смело приняли число электронов равным 6 и выдвинули теорию строения атомов, которая содействовала дальнейшему развитию атомной физики, направляя экспериментаторов и теоретиков по верному пути. Опытная проверка теории на основе содержащихся в ней положений подтвердила правильность этой теории и окончательно оправдала выбор числа 6 в ретроспективном плане.
Мы встречаем много задач, в которых отыскание точного ответа либо требует затраты неоправданных усилий, либо просто невозможно, но где в то же время можно удовлетвориться приближенным решением. В таких случаях не остается ничего другого, как на основе разумных предположений, требующих смекалки и работы мысли, произвести оценку, или, как говорят, «грубую прикидку».
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.