Физика для любознательных. Том 1. Материя. Движение. Сила - [126]

Шрифт
Интервал

, по существу содержат рассмотрение простого гармонического движения);

— колебания воздуха при возникновении звуковых волн, например колебания воздуха внутри флейты (график зависимости р от V, соответствующий закону Бойля, непохож на прямую закона Гука, но изменения давления, которые здесь имеют место, очень малы, они укладываются на коротком участке графика, настолько коротком, что его можно практически считать отрезком прямой);

— жидкость в открытой U-образной трубке[159];

— струны музыкальных инструментов.

Мы называем это движение простым гармоническим колебанием, потому что подобные колебания совершаются в музыкальных инструментах, когда берут чистый тон (при этом от музыкальных инструментов исходят соответствующие звуковые волны).

При затухании колебаний период их остается неизменным, волны характеризуются неизменной частотой и мы слышим тот же звук.


Опыт 1. Наблюдая за колебаниями очень длинного маятника, можно лучше уяснить, что такое гармоническое движение. Можно попытаться самому совершать простое гармоническое движение, двигаясь взад и вперед по некоторому отрезку пути (фиг. 263).



Фиг. 263.Простое гармоническое движение.


При движении наклоняйтесь в направлении к центру отрезка так, чтобы наклон характеризовал ваше ускорение; в конце пути вы должны сильно наклониться в направлении к центру, а пробегая мимо центра с максимальной скоростью, — выпрямиться. В центре отрезка, где вы движетесь быстрее всего, вы не можете двигаться еще быстрее, поэтому ваше ускорение равно нулю. В конце отрезка ваша скорость на какое-то мгновение становится равной нулю, но в то же время она изменяется здесь быстрее всего, ибо сначала скорость направлена от центра, проходит через нуль, затем направление скорости меняется на обратное; в этой точке вы обладаете довольно большим ускорением, направленным к центру отрезка; так подсказывают ваши ноги. (Сопоставьте это с рассмотрением ускорения тела, брошенного под углом к горизонту, в «вершине» его траектории.)


График простого гармонического движения — синусоида

Математика показывает, что зависимость от времени отклонения при простом гармоническом движении, определением которого служит соотношение а = —k>2s, имеет вид s = A∙sinkt, где A — амплитуда колебания.

На фиг. 264 показана диаграмма движения маятника времени, вычерчиваемая им самим. К нижней части груза маятника прикреплена кисточка, обмакнутая в чернила, которая прочерчивает на равномерно протягиваемой длинной полосе бумаги диаграмму движения маятника во времени.



Фиг. 264.График зависимости отклонений маятника от времени.


На фиг. 265 представлена схема опыта, позволяющего получить такой же график с помощью колеблющегося камертона.



Фиг. 265.Диаграмма движения ножек камертона во времени.


К одной из ножек камертона полоской тонкой целлулоидной пленки прикреплено маленькое зеркальце, позволяющее получить увеличенную картину движения. Когда камертон колеблется, пучок света, отраженный зеркальцем, движется вверх и вниз в пределах некоторого угла и прочерчивает вертикальную полоску на стене. На пути света находится большое зеркало, которое равномерно вращается и развертывает луч на стене по горизонтали, вычерчивая таким образом временную диаграмму движения вверх и вниз от положения равновесия. Камертон — это по существу балка, претерпевающая изгиб, которая имеет форму буквы U. Балка упругая и подчиняется закону Гука, поэтому мы вправе ожидать, что она совершает простые гармонические колебания. Проделанные опыты показывают, что при простом гармоническом движении зависимость смещения от времени изображается синусоидой.

Амплитуда колебаний издающего звук камертона затухает — об этом свидетельствует кривая на стене. Однако частота колебаний сохраняется неизменной, как показывают расстояния между горбами кривой. Грубый удар по камертону молотком приводит к тому, что камертон совершает колебания сразу двух видов и позволяет наблюдать сложное гармоническое движение.


Простое гармоническое движение как проекция движения по окружности

В элементарной тригонометрии определение синуса дается при помощи окружности, и можно легко прийти к выводу, что график синуса изображает проекцию движения по окружности. Поэтому поступим следующим образом: представим себе точку Р, движущуюся с постоянной скоростью по окружности, расположенной в вертикальной плоскости, и будем смотреть на эту окружность сбоку или будем рассматривать движение тени, отбрасываемой точкой Р на вертикальную стенку (фиг. 266).



Фиг. 266.Проекция движения по окружности.


Тогда точка Q (тень точки Р) будет двигаться вверх и вниз. Можно показать, что график зависимости смещения точки Q от времени представляет собой синусоиду (с уравнением s = A∙sinkt, где А — радиус окружности), а это, как мы знаем, и есть временная зависимость простого гармонического движения. Поэтому проекция движения по окружности представляет собой простое гармоническое движение.

На фиг. 267 и 268 схематически показаны опыты, позволяющие сравнить движение маятника или колеблющейся пружины с проекцией движения по окружности. (Инженерам-электрикам часто приходится иметь дело с переменным током, который представляет собой простые гармонические колебания и графически изображается синусоидой. Чтобы производить свои расчеты в сжатой форме, инженеры представляют такие токи или напряжения вращающимся радиусом-вектором, равным амплитуде тока или напряжения; конец этого радиуса-вектора описывает окружность. При вычислениях оперируют проекциями радиуса-вектора. Это считают само собой разумеющимся и обычно упускают из виду.)


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.