Физика для любознательных. Том 1. Материя. Движение. Сила - [125]
Движение маятника характеризуется переменным ускорением, которое всегда направлено к среднему положению и изменяется прямо пропорционально расстоянию от этого положения.
Если s — расстояние вдоль траектории, скажем, груза маятника, а а — ускорение, то мы найдем a ~ s, или а = —k>2s, где k — вещественная постоянная.
Знак минус показывает, что ускорение направлено в сторону, противоположную отклонению. (Когда груз отклонен вправо — мы считаем такие отклонения положительными, когда ускорение направлено влево, мы приписываем ему отрицательное значение.)
Фиг. 261.Разнообразные системы, совершающие простые гармонические движения.
Механика движения маятника
Чтобы показать, что для груза маятника а ~ s (при малых амплитудах), рассмотрим действующие на него силы. Сила натяжения нити направлена по радиусу и не может изменить скорость груза. Кроме этой силы, на груз действует только притяжение Земли, вес груза, направленный вертикально вниз. Разложим этот вектор на компоненты F>1 и F>2:
F>1 направленная вдоль дуги, придает грузу ускорение,
F>2 направленная вдоль радиуса, уравновешивает натяжение нити.
Из рассмотрения подобных треугольников (фиг. 262) находим
СИЛА F>1 ПРИДАЮЩАЯ УСКОРЕНИЕ / ВЕС Mg = РАССТОЯНИЕ ПО ГОРИЗОНТАЛИ х / ДЛИНА L
F>1/Mg = x/L
Следовательно,
F>1 = Mg∙x/L
и
УСКОРЕНИЕ ГРУЗА = СИЛА/МАССА = — F>1/M = (-Mg∙x/L)/M = — g∙x/L
Таким образом, мы установили, что а направлено к положению равновесия и что а ~ х, но мы не получили соотношения a ~ s вдоль траектории движения маятника. При больших отклонениях маятника его движение не является простым гармоническим движением. При малых отклонениях оно почти в точности совпадает с простым гармоническим движением, и х (горизонтальное смещение груза) почти совпадает с криволинейной дугой s (отклонением груза, измеренным вдоль его траектории).
Фиг. 262.Силы, действующие на груз маятника.
В таком случае мы можем перейти от а = —(g/L)∙x к а = —(g/L)∙s
(обе величины примерно одинаковы для маятника в данном случае), а это и есть наше определение простого гармонического движения: анаправлено к положению равновесия и а ~ смещению s.
Мы описываем это свойство выражением
а = — k>2s,
где k>2 — постоянная.
Отсюда можно показать, что период Т дается соотношением
T = 2π/k
(Это легче всего сделать с помощью математического анализа; см. ниже. Существуют доказательства, в которых не прибегают к математическому анализу, но они ведут к цели обходным и весьма громоздким путем, см. учебники по общей физике.) Поэтому каждый раз, встречая систему, в которой действие сил приводит к соотношению а = —k>2s, мы можем сразу сказать, что такая система способна совершать простое гармоническое движение с периодом 2π/k.
Простые гармонические движения и закон Гука
Теперь вернемся к замечанию, которое было сделано в задаче 1.
Предположим, имеется груз, который подвешен на пружине, подчиняющейся закону Гука. Натяжение пружины в точности уравновешивает вес груза, когда он находится в состоянии покоя или когда, совершая колебания, проходит через положение равновесия. Во всех других положениях существует небольшое натяжение (со знаком + или —), пропорциональное удлинению (по закону Гука); оно придает грузу ускорение. Ускорение всегда направлено к положению равновесия и меняется прямо пропорционально смещению от этого положения (по закону Гука). Таким образом, мы имеем соотношение а = —k>2s, которое как раз и соответствует движению, называемому нами простым гармоническим колебанием.
Период колебания 2π/k можно вычислить, зная массу груза М и «жесткость» пружины К, равную отношению (сила)/(удлинение); это отношение представляет собой постоянную, определяющую наклон прямой, которая выражает закон Гука. Добавочная сила, соответствующая добавочному удлинению s, равна Ks, а сообщаемое ею ускорение равно — ks/M. Следовательно, k>2 равно K/M, и Т дается выражением
Т = 2π∙√(ЖЕСТКОСТЬ» ПРУЖИНЫ К / МАССА М).
Это соотношение позволяет вычислить период простого гармонического колебания. Кроме того, у нас появляется превосходный способ оценить жесткость пружины по измеренному периоду колебаний. Мы пользуемся им, измеряя g с помощью маятника: в этом случае сила земного притяжения дает эквивалентную «жесткость пружины», равную Mg/L. В опыте Кавендиша, который позволяет измерить гравитационную постоянную G (см. гл. 23[158]), проволока слишком слаба для прямого измерения ее сопротивления закручиванию, поэтому измеряют период крутильных колебаний проволоки, представляющих собой простое гармоническое движение, и вычисляют сопротивление закручиванию.
Простое гармоническое движение — широко распространенный вид движения
Итак, мы можем сказать, что простые гармонические колебания совершает любая система, в которой развивается возвращающая сила, пропорциональная смещению от положения равновесия:
— любой маятник (при малых отклонениях);
— любая система, подчиняющаяся закону Гука (например, пружина, к которой прикреплен груз; балка, подвергаемая изгибу; спиральная пружина, т. е, лента, свернутая в плоскую спираль, которая также подвергается изгибу, и т. д.);
— атомы, удерживаемые в молекуле упругими электрическими силами (задачи об инерционных весах, разбиравшиеся в
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
6 и 9 августа 1945 года японские города Хиросима и Нагасаки озарились светом тысячи солнц. Две ядерные бомбы, сброшенные на эти города, буквально стерли все живое на сотни километров вокруг этих городов. Именно тогда люди впервые задумались о том, что будет, если кто-то бросит бомбу в ответ. Что случится в результате глобального ядерного конфликта? Что произойдет с людьми, с планетой, останется ли жизнь на земле? А если останется, то что это будет за жизнь? Об истории создания ядерной бомбы, механизме действия ядерного оружия и ядерной зиме рассказывают лучшие физики мира.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В небольшой по объему книге «Золотое правило» М. Ивановский в занимательней форме сообщает читателю интересные сведения из истории, а также из жизни великого ученого древности — Архимеда.Наряду с историческими сведениями автор, воспользовавшись удачным литературным приемом, знакомит школьников с устройством и действием целого ряда простых механизмов — ворота, лебедки, полиспаста, дифференциального ворота и др. И хотя некоторые из этих механизмов не изучаются в школьном курсе физики, они в описании автора становятся вполне понятными для учащихся VI–VII классов.М.
В книге описываются результаты экспериментов по изучению оригинального квантово-волнового метода механического воздействия на кристаллы алмаза. Проведенные эксперименты открывают новые свойства и особенности этих кристаллов, находящихся в сильнонеравновесных условиях обработки. Показана принципиальная возможность возникновения необратимых сильнонеравновесных явлений в кристаллах алмаза при формировании в их объеме волновых потоков с винтовым возмущением волнового фронта. Взаимодействие этих волновых потоков в объеме алмаза приводит как к изменению дефектно-примесной структуры алмаза, снятию внутренних напряжений, так и к формированию морфологического рельефа поверхности кристалла без непосредственного касания всей его поверхности инструментом.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.