Физика для любознательных. Том 1. Материя. Движение. Сила - [102]

Шрифт
Интервал



Фиг. 195.Количество, движения как вектор.

>а — движение автомобилей до и после столкновения; б — диаграмма векторов количества движения автомобиля А, автомобиля В и обоих автомобилей вместе.


На фиг. 196 показана бомба, скользящая по льду. Бомба разрывается на два осколка, количества движения которых при векторном сложении дают в сумме количество движения бомбы при ее скольжении по льду до взрыва[126].



Фиг. 196. Бомба на льду.

>Внизу показана векторная сумма количеств движения обоих осколков.


Чтобы проверить векторный характер закона сохранения количества движения, оставим модель железной дороги с вагончиком и будем наблюдать за столкновением брикетов сухого льда на столе, покрытом листом алюминия. Можно также использовать маятники — стальные шары, подвешенные на длинных нитях[127]. В любом случае мы обнаруживаем, что количества движения после столкновения складываются по правилу сложения векторов, и их сумма равна сумме количеств движения до столкновения. Можно поступить и по-другому: проанализировать наши измерения, разложив каждое Mv на компоненты по двум взаимно перпендикулярным направлениям. Если первоначально двигалось лишь одно тело, то целесообразно выбрать ось х в направлении этого движения, а ось у перпендикулярно к оси х, затем можно разложить все количество движения на х- и у-компоненты. Тогда мы обнаружим, что сумма х-компонент после столкновения равна количеству движения до столкновения, а обе у-компоненты после столкновения равны и противоположны друг другу по направлению.

Может показаться, что рисование и анализ траектории сталкивающихся тел в подобных случаях дело надуманное и бесполезное. Но мы умеем фотографировать траектории отдельных атомов и частей атомов, претерпевающих столкновения, анализ же таких траекторий имеет огромное значение в атомной физике. Электроны, заряженные атомы гелия и другие атомные частицы, пролетая через так называемую камеру Вильсона (о ней рассказано в гл. 39[128]), оставляют отчетливые следы. Если происходит столкновение, то след обнаруживает резкий излом, появляется новый, отходящий в сторону след частицы, испытывающей отдачу, обычно атома газа, в который попала налетающая частица. Зная массы сталкивающихся атомов или атомных частиц, путем построения векторной диаграммы можно извлечь важные сведения о скоростях (количествах движения). Если же известны скорости, то векторная диаграмма позволяет определить отношения масс.


Задача 2. Столкновение ядер

Измерения, выполненные на реальном снимке следов в камере Вильсона, для быстрой альфа-частицы А (ядра гелия), налетающей на неподвижную частицу В (скорости даны в произвольных единицах), позволили получить следующие данные[129]:

До столкновения частица А двигалась со скоростью 2,00 единицы в 1 сек. После столкновения частица А двигалась со скоростью 1,90 единицы в 1 сек в направлении, составляющем 8°,5 с направлением ее первоначальной траектории.

Частица В двигалась после столкновения со скоростью 1,25 единица в 1 сек под углом 68° к направлению первоначальной траектории А (следы обеих частиц образуют Y-образную вилку с углом 76°,5).

Требуется установить природу частицы В, сопоставив ее массу с массой частицы А согласно приведенной ниже методике. Для удобства воспользуемся относительной шкалой атомных масс, принятой в химии, в которой масса ядра гелия А равна 4,0 «атомным единицам массы» (а. е. я,). Тогда, если бы частица В была ядром кислорода, ее масса равнялась бы, 16,0 а. е. м.; в случае азота масса частицы В составляла бы 14,0 а. е. м.; в случае гелия — 4,0 а. е. м., в случае тяжелого водорода — 2,0 а. е. м.; масса ядра обычного водорода равна 1,0 а. е. м.

При определении массы частицы В воспользуйтесь предлагаемым перечнем. (Если у вас получится в ответе какое-нибудь дробное число, например 0,2 или 5,3, то это значит, что вы открыли новую атомную частицу, которую следовало бы как-то назвать в вашу честь.)

а) Начертите на большом листе бумаги в подходящем масштабе векторную диаграмму количеств движения следующим образом: проведите векторы количества движения частицы А до и после столкновения и отметьте количество движения, которое должна приобрести частица В, чтобы в целом количество движения сохранялось.

б) Измерьте вектор количества движения частицы В и, воспользовавшись приведенными данными о скорости, вычислите массу частицы, В.

в) При построении вы, вероятно, воспользовались углом 8,3°, а не 68°. В этом случае измерьте подходящий угол на вашей диаграмме и сравните его с углом 68°. (Получающееся совпадение служит частичной проверкой правил сложения и сохранения количества движения, из которых вы исходили при построении диаграммы.)



Фиг. 197.К задаче 2


г) Если вы знакомы с понятием кинетической энергии тела, которая равна >1/>2mv>2 (см. гл. 26[130]), то рассмотрите эту задачу еще раз. Возьмите 4,00 в качестве массы частицы А, а в качестве массы частицы В полученное вами значение и посмотрите, сохраняется ли кинетическая энергия. Если она сохраняется, то взаимодействие представляет собой простое упругое столкновение без каких-либо ядерных превращений. Если же кинетическая энергия не сохраняется, то при взаимодействии должна поглощаться или выделяться ядерная энергия.


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Физика элементарных частиц материи

Мировое пространство – мир. Мир – это бесконечное пространство во всех измерениях, это объективная реальность ни от чего не зависящая, существующая сама по себе. Мировое пространство – это безграничная, бесконечная пустота. Космос – это пространство между отдельными космическими объектами.


Этот правый, левый мир

Симметрия и асимметрия в математике, искусстве, философии, астрономии, зоологии, анатомии, химии, ядерной физике — предмет волнующих открытий для всех любознательных. Почему у нарвала бивень имеет левую «резьбу»? Будут ли марсианские асимметричные вирусы пагубны для космонавтов, а земные — для марсиан? Что такое «бустрафедон» и какое это отношение имеет к двум крупнейшим научным открытиям последнего десятилетия — ниспровержению физиками закона сохранения четности и открытию биологами винтообразного строения молекулы, которая несет генетический код? Об этом и еще очень многом из правого, левого мира вы сможете прочитать в этой живой и занимательной книге.


Законы движения

Книга М. Ивановского «Законы движения» знакомит читателей с основными законами механики и с историей их открытия. Наряду с этим в ней рассказано о жизни и деятельности великих ученых Аристотеля, Галилея и Ньютона.Книга рассчитана на школьников среднего возраста.Ввиду скоропостижной смерти автора рукопись осталась незаконченной. Работа по подготовке ее к печати была проведена Б. И. Смагиным. При этом IV, V, VI и VII главы подверглись существенной переработке. Материал этих глав исправлен и дополнен новыми разделами.


Большая история

Большая история – новое исследовательское направление, в рамках которого изучается единый преемственный процесс развития Вселенной – с момента Большого взрыва до настоящего времени. Междисциплинарный проект The Big History Project был основан Биллом Гейтсом и Дэвидом Кристианом с целью разработки целостного курса истории космоса, Земли, жизни и человечества и преподавания его во всем мире. Эта книга, написанная на стыке естественных и гуманитарных наук – физики, геологии, астрономии, истории, социологии и других, – насыщенное обобщение новейших научных представлений о рождении и развитии Вселенной, Солнечной системы, океанов, гор и минералов, всего живого на Земле и о динамике, которую порождают человеческие достижения и культура. Начиная с того, что рождение Вселенной – это такое же чудо, как и все остальное в современной истории происхождения мира, вместе с автором вы проследите увлекательные этапы появления и усложнения элементов нашего мироздания, логику их совершенствования – и риски разрушения.


Новый физический фейерверк

Эта книга поможет вам понять, как устроен окружающий мир и чем занимается физика как наука. Легким и неформальным языком она расскажет о физических законах и явлениях, с которыми мы сталкиваемся в повседневной жизни.


Мировые загадки сегодня

Существует ли окружающий мир и таков ли он, каким нам представляется? Что такое материя и движение? Есть ли целесообразность в природе? Является ли возникновение сознания неразрешимой загадкой? Эти и многие другие вопросы разбирает в своей книге известный популяризатор науки писатель Игорь Адабашев. Книга убедительно показывает, что человек способен познать окружающий мир, что «мировые загадки», о которых говорят христианские богословы и философы-идеалисты, не что иное, как еще не познанные, но вполне познаваемые явления природы.