Физика для любознательных. Том 1. Материя. Движение. Сила - [102]

Шрифт
Интервал



Фиг. 195.Количество, движения как вектор.

>а — движение автомобилей до и после столкновения; б — диаграмма векторов количества движения автомобиля А, автомобиля В и обоих автомобилей вместе.


На фиг. 196 показана бомба, скользящая по льду. Бомба разрывается на два осколка, количества движения которых при векторном сложении дают в сумме количество движения бомбы при ее скольжении по льду до взрыва[126].



Фиг. 196. Бомба на льду.

>Внизу показана векторная сумма количеств движения обоих осколков.


Чтобы проверить векторный характер закона сохранения количества движения, оставим модель железной дороги с вагончиком и будем наблюдать за столкновением брикетов сухого льда на столе, покрытом листом алюминия. Можно также использовать маятники — стальные шары, подвешенные на длинных нитях[127]. В любом случае мы обнаруживаем, что количества движения после столкновения складываются по правилу сложения векторов, и их сумма равна сумме количеств движения до столкновения. Можно поступить и по-другому: проанализировать наши измерения, разложив каждое Mv на компоненты по двум взаимно перпендикулярным направлениям. Если первоначально двигалось лишь одно тело, то целесообразно выбрать ось х в направлении этого движения, а ось у перпендикулярно к оси х, затем можно разложить все количество движения на х- и у-компоненты. Тогда мы обнаружим, что сумма х-компонент после столкновения равна количеству движения до столкновения, а обе у-компоненты после столкновения равны и противоположны друг другу по направлению.

Может показаться, что рисование и анализ траектории сталкивающихся тел в подобных случаях дело надуманное и бесполезное. Но мы умеем фотографировать траектории отдельных атомов и частей атомов, претерпевающих столкновения, анализ же таких траекторий имеет огромное значение в атомной физике. Электроны, заряженные атомы гелия и другие атомные частицы, пролетая через так называемую камеру Вильсона (о ней рассказано в гл. 39[128]), оставляют отчетливые следы. Если происходит столкновение, то след обнаруживает резкий излом, появляется новый, отходящий в сторону след частицы, испытывающей отдачу, обычно атома газа, в который попала налетающая частица. Зная массы сталкивающихся атомов или атомных частиц, путем построения векторной диаграммы можно извлечь важные сведения о скоростях (количествах движения). Если же известны скорости, то векторная диаграмма позволяет определить отношения масс.


Задача 2. Столкновение ядер

Измерения, выполненные на реальном снимке следов в камере Вильсона, для быстрой альфа-частицы А (ядра гелия), налетающей на неподвижную частицу В (скорости даны в произвольных единицах), позволили получить следующие данные[129]:

До столкновения частица А двигалась со скоростью 2,00 единицы в 1 сек. После столкновения частица А двигалась со скоростью 1,90 единицы в 1 сек в направлении, составляющем 8°,5 с направлением ее первоначальной траектории.

Частица В двигалась после столкновения со скоростью 1,25 единица в 1 сек под углом 68° к направлению первоначальной траектории А (следы обеих частиц образуют Y-образную вилку с углом 76°,5).

Требуется установить природу частицы В, сопоставив ее массу с массой частицы А согласно приведенной ниже методике. Для удобства воспользуемся относительной шкалой атомных масс, принятой в химии, в которой масса ядра гелия А равна 4,0 «атомным единицам массы» (а. е. я,). Тогда, если бы частица В была ядром кислорода, ее масса равнялась бы, 16,0 а. е. м.; в случае азота масса частицы В составляла бы 14,0 а. е. м.; в случае гелия — 4,0 а. е. м., в случае тяжелого водорода — 2,0 а. е. м.; масса ядра обычного водорода равна 1,0 а. е. м.

При определении массы частицы В воспользуйтесь предлагаемым перечнем. (Если у вас получится в ответе какое-нибудь дробное число, например 0,2 или 5,3, то это значит, что вы открыли новую атомную частицу, которую следовало бы как-то назвать в вашу честь.)

а) Начертите на большом листе бумаги в подходящем масштабе векторную диаграмму количеств движения следующим образом: проведите векторы количества движения частицы А до и после столкновения и отметьте количество движения, которое должна приобрести частица В, чтобы в целом количество движения сохранялось.

б) Измерьте вектор количества движения частицы В и, воспользовавшись приведенными данными о скорости, вычислите массу частицы, В.

в) При построении вы, вероятно, воспользовались углом 8,3°, а не 68°. В этом случае измерьте подходящий угол на вашей диаграмме и сравните его с углом 68°. (Получающееся совпадение служит частичной проверкой правил сложения и сохранения количества движения, из которых вы исходили при построении диаграммы.)



Фиг. 197.К задаче 2


г) Если вы знакомы с понятием кинетической энергии тела, которая равна >1/>2mv>2 (см. гл. 26[130]), то рассмотрите эту задачу еще раз. Возьмите 4,00 в качестве массы частицы А, а в качестве массы частицы В полученное вами значение и посмотрите, сохраняется ли кинетическая энергия. Если она сохраняется, то взаимодействие представляет собой простое упругое столкновение без каких-либо ядерных превращений. Если же кинетическая энергия не сохраняется, то при взаимодействии должна поглощаться или выделяться ядерная энергия.


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.