Физика для любознательных. Том 1. Материя. Движение. Сила - [100]
Следовательно, действующая сила равна = ___. ___ >(единицы) ~= ___ кГ.
Количество движения
Мы называем произведение Mv «количеством движения» (это очень удобная величина, и ею широко пользуются в физике).
Тогда соотношение F∙t = Δ(Mv) гласит: «Сила, умноженная на время ее действия, равна изменению количества движения»[123].
При внезапном изменении количества движения время зачастую мало и его записывают в виде Δt, имея в виду «изменение времени дня», например короткий интервал времени между 3 час. 42 мин. 4,60 сек. и 3 час. 42 мин. 4,72 сек. Значит, мы можем писать
F∙Δt = Δ (количество движения), или Δ(Mv).
Единицы
Поскольку соотношение F∙t = Δ(Mv) получено из соотношения F = M∙a, то силу F нужно выражать в тех же абсолютных единицах — ньютонах. Если М дано в кг, a v — в м/сек, то количество движения Mv будет выражено в килограммах, умноженных на м/сек. Это записывают в таком виде[124]: кг∙м/сек. Если Mv выражено в кг∙м/сек, а t — в сек, то F должна быть в ньютонах[125].
Прыжки и столкновения
Попытаемся применить соотношение F∙Δt = Δ(Mv) в задачах о прыжках, совершаемых людьми, и о столкновениях автомобилей. Мы воспользуемся этим соотношением при решении приводимых ниже задач, а также при построении молекулярной теории газов, где оно позволит нам сделать важные предсказания.
В соотношении F∙Δt = Δ(Mv) величина F представляет собой реальную силу, именно ту силу, которая необходима, чтобы произвести заданное изменение количества движения за указанный промежуток времени Δt. Если пол, стена или что-то еще не развивают силы, то количество движения движущегося тела не изменится.
За короткое время может произойти большое изменение Mv, например, когда прыгун опускается на землю или когда автомобиль врезается в стену. В этом случае Δ(Mv) велико, a Δt мало
F∙(малое Δt) = большое Δ(Mv).
Таким образом, сила F должна быть очень велика. При столкновениях развиваются огромные силы, и, хотя они действуют в течение лишь очень коротких промежутков времени, эти силы способны причинить большой ущерб. Чтобы уменьшить F и предотвратить плачевные последствия, нужно увеличивать Δt. Для этого следует при прыжке сгибать ноги в коленях и надевать мягкую обувь, этой же цели служат эластичные предохранительные маты.
Вратари надевают особые перчатки и, задерживая мяч, следят за тем, чтобы их рука отходила назад для удлинения промежутка времени Δt, в течение которого мяч останавливается. В гл. 7, где была приведена задача о прыжке человека на пол, скорость человека изменялась от 5 м/сек до нуля примерно за >1/>100 сек.
В этом случае соотношение F∙Δt = Δ(Mv) дает
F∙(>1/>100 сек) = (100 кг х 0) — (100 кг х 5 м/сек) =
= —500 кг∙м/сек (или ньютон∙сек),
= —50 000 ньютон
(F выражается в ньютонах, поскольку массу мы выражаем в кг, v — в м/сек; F должна быть выражена в абсолютных единицах)
~= 5000 кГ, или 5 тонн силы.
Это настолько большая сила, что действие ее со стороны пола на ступни, которое передается на позвоночник, недопустимо даже в течение >1/>100 сек. Не пытайтесь прыгать с таким резким приземлением — можете поплатиться серьезными телесными повреждениями. Но прыжок с высоты 1,2 м можно сделать вполне безопасным. Для этого достаточно просто согнуть ноги в коленях, увеличив Δt в 10–20 раз по сравнению с >1/>100 сек и тем самым уменьшив в 10–20 раз силу F.
Футболист, сообщая мячу массой 0,5 кг скорость 20 м/сек ударом ноги, длящимся >1/>100 сек, прикладывает к мячу силу, которая дается соотношением
F∙>1/>100 = (0,5 кг х 20 м/сек) — (0,5 кг х 0)
F = 10/0,01 = 1000 ньютон ~= 100 кГ.
Носок бутсы должен быть очень крепким.
Борец, когда его бросают на ковер, пытается по возможности удлинить время «приземления», расслабив мышцы и распределяя удар об пол на ряд последовательных столкновений, в которых участвовали бы лодыжки, колени, бедра, ребра, плечи.
Перераспределение количества движения
При столкновении тел происходит обмен количеством движения, перераспределение количества движения между телами.
Понаблюдайте за описанным ниже опытом и установите, приобретается или теряется количество движения при столкновениях.
ДЕМОНСТРАЦИОННЫЙ ОПЫТ
Опыт 1. Тележка, движущаяся по рельсовому пути, наклоненному для компенсации трения, налетает на неподвижную тележку; обе тележки сцепляются буферами и продолжают двигаться вместе. На первой тележке укреплена полоска картона, и с помощью фотоэлемента и часов можно определить скорость тележки. Второй фотоэлемент с часами позволяет определить скорость сцепленных тележек после столкновения.
На фиг. 194 показана схема такого опыта.
Фиг. 194.Столкновения.
>Часы I показывают время, за которое картонная полоска на тележке А проходит мимо фотоэлемента до столкновения. Часы II показывают время прохождения картонной полоски мимо фотоэлемента после столкновения, когда тележки сцепляются.
Тележка А массой 2,00 кг налетает на стоящую неподвижно тележку В, масса которой равна 4,00 кг. После столкновения тележки сцепляются (суммарная масса их оказывается равной 6,00 кг) и продолжают двигаться вместе с меньшей скоростью. Перед столкновением картонная полоска длиной 0,5 м, укрепленная на тележка
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы — Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.