Евклидово окно - [78]

Шрифт
Интервал

со скоростью света.) А еще она предсказывала существование кое-каких дополнительных частиц, которых никто никогда не наблюдал.

Если местный прогноз погоды предсказывает отрицательные 50 % вероятности шторма, выпадение осадков вверх и осыпь жаб с небес, компьютерная модель метеорологов, скорее всего, не вызовет у вас доверия. Физики тоже настроились скептически. Но предположите, что прогноз при этом предсказал температуру воздуха — и угадал. Связь между бозонными струнами и поведением адронов оказалась слишком интригующей — рука не поднималась ее отмести.

Много чего в теории уже выглядело довольно неуклюжим, но вскоре физики поняли, что есть и еще одно узкое место, совсем уж затруднительное. В квантовой механике все частицы могут принадлежать к одному из двух типов: бозоны и фермионы. Технически говоря, разница между бозонами и фермионами — в типе внутренней симметрии, известной как «спин». Но на практическом уровне эта разница выражается в том, что никакие два фермиона не могут иметь одно и то же квантовое состояние. Это вполне хорошее свойство, если городить, скажем, атомы, из которых сделана материя. Это означает, что электроны в атоме не будут толпиться все разом на самом нижнем энергетическом уровне. Если б толпились, они у всех химических элементов там преимущественно и оставались бы. А на самом деле атомы элементов периодической системы получаются путем заполнения электронами энергетических уровней, одного за другим, вплоть до внешних; благодаря этому атомы разных элементов имеют разные физические и химические особенности. У бозонов такого ограничения нет. Поэтому материя сделана из фермионов. Калибровочные частицы, обеспечивающие взаимодействия между фермионами, — бозоны. Однако в бозонной теории струн все частицы… что? Именно — бозоны.

Вот с этой-то закавыкой струнной теории Шварц и взялся разбираться в первую очередь. Этим он завоевал расположение своего наставника и возможность остаться в лучшем университете, где его работа хоть и не вызывала доверия, но, по крайней мере, могла быть замечена.

В 1971 году Пьер Рамон из Университета Флориды вывел струнную теорию для фермионов, обнаружив начатки формы новой симметрии, названной суперсимметрией, и она связала бозоны и фермионы. Тут-то Шварц, совместно с Андрэ Невё, развил теорию, известную под названием спиновой теории струн, которая включала в себя частицы и фермионного, и бозонного типа, избавлялась от тахионов и уменьшала число требуемых измерений с двадцати шести до десяти. Эта работа оказалась значимой поворотной точкой и в истории струнной теории, и в карьере Шварца.

Гелл-Манн, работавший тогда в Женевском ЦЕРНе[301] (Европейская лаборатория физики частиц), говорит: «Как только вышла статья Шварца, я его нанял». Они даже не встречались. Следующей осенью Шварц перебрался в Калтех из Принстона, где ему отказали в пожизненном профессорстве. Пока Фейнман считал теорию струн одной из тех патентованных панацей-однодневок, что вечно появлялись и исчезали, Гелл-Манн разделял веру Шварца. «На что-нибудь она должна была сгодиться, — говорил он. — Я не понимал, на что именно, но на что-нибудь-то уж точно». В 1974-м Гелл-Манн притащил в Калтех погостить еще одного теоретика струн, Джоэла Шерка. Шварц и Шерк вскоре сделали потрясающее открытие[302].

В теории струн была частица со свойствами глюона, калибровочной частицы сильных взаимодействий. Но существовала при этом и досадная неловкость — дополнительная частица, тоже из категории калибровочных, от которой вроде бы не было никакого толка. До работы Шварца и Шерка длину струны считали равной 10–13 сантиметров, что есть примерный диаметр адрона. Но они обнаружили, что если предположить куда меньший размер — 10–33 сантиметра, т. е. планковскую длину, — дополнительная калибровочная частица отлично подходит по свойствам под гравитон — гипотетическую калибровочную частицу поля тяготения. Струнная теория — это же не только теория адронов, она включала в себя и гравитацию, а может, даже и электрослабые взаимодействия!

Но постойте-ка. Разве мы не выяснили, что смешение гравитации с квантовой механикой приводит к хаосу и противоречию? В теории Шварца и Шерка — именно потому, что струны не считались лишенными размерностей точками, а объектами конечной длины, — проблем ультрамикроскопичности не возникло. Они нашли то, что сочли непротиворечивой квантовой теорией поля, из которой могли вывести уравнения Эйнштейна, но которая на ультрамикроскопическом уровне вела себя иначе именно так, как требовалось для снятия противоречий между общей теорией относительности и квантовой механикой. Эйнштейн, опубликовав статью об относительности, ожидал нападок. Шварц и Шерк — шквала восторгов.

Шварц и Шерк покатались по миру с лекциями. Публика вежливо поаплодировала, после чего забыла об их работе. Пристань к ней с вопросами, она бы сказала, что не верит. В защиту «публики»: математика была (и остается) чрезвычайно трудной и сложной. «Публика не пожелала вложиться в понимание, а без вельможной санкции никаких усилий от нее не дождешься»[303]


Еще от автора Леонард Млодинов
Кратчайшая история времени

Природе пространства и времени, происхождению Вселенной посвящена эта научно-популярная книга знаменитого английского астрофизика Стивена Хокинга, написанная в соавторстве с популяризатором науки Леонардом Млодиновым. Это новая версия всемирно известной «Краткой истории времени», пополненная последними данными космологии, попытка еще проще и понятнее изложить самые сложные теории.


Высший замысел

Соавторство Стивена Хокинга и Леонарда Млодинова, специалиста по квантовой теории и теории хаоса, являет собой успешный творческий тандем, что уже подтвердило их совместное произведение «Кратчайшая история времени», которое имело небывалый успех.«Высший замысел» — новая захватывающая работа этих удивительных авторов.Цель этой книги — дать ответы на волнующие нас вопросы существования Вселенной, ответы, основанные на последних научных открытиях и теоретических разработках. Они приводят нас к уникальной теории, описывающей огромную, изумительно разнообразную Вселенную, — к теории, которая позволит нам разгадать Высший замысел.


Великий замысел

Все мы существуем лишь непродолжительный период времени и на его протяжении способны исследовать лишь небольшую часть мироздания. Но люди — существа любопытные. Мы задаемся вопросами, мы ищем на них ответы. Живя в этом огромном мире, который бывает то добрым, то жестоким, и вглядываясь в бесконечное небо, люди постоянно задаются множеством вопросов: Как мы можем понять мир, в котором оказались? Как ведёт себя Вселенная? Какова природа реальности? Откуда всё это возникло? Нуждалась ли Вселенная в создателе? Многие из нас не тратят много времени на эти вопросы, но почти все из нас когда-либо об этом задумывались.Один из самых известных ученых нашего времени — Стивен Хокинг написал книгу, продолжающую тему, начатую в его предыдущих книгах.


(Нео)сознанное. Как бессознательный ум управляет нашим поведением

Все наши суждения — от политических предпочтений до оценки качества бытовых услуг — отражают работу нашего ума на двух ярусах: сознательном и неосознанном, скрытом от нашего внимания. Неповторимый стиль Леонарда Млодинова — живой, ясный язык, юмор и способность объяснять сухие научные факты так, чтобы они были понятны самой широкой аудитории — позволяет нам понять, как неосознанное влияет на нашу жизнь, по-новому взглянуть на отношения с друзьями, супругами, пересмотреть представления о себе самих и о мире вокруг.vk.com/psyfb2.


Прямоходящие мыслители. Путь человека от обитания на деревьях до постижения миро устройства

Два фактора – прямохождение и зарождение мышления – когда-то стали мощным толчком для эволюции нашего вида. Посудите сами: всего пару миллионов лет назад мы жевали коренья и только учились ходить прямо, а теперь управляем самолетами, шлем мгновенные сообщения и исследуем воду на Марсе.Леонард Млодинов – с его великолепным чувством юмора и даром объяснять сложные вещи простым языком – приглашает читателей всех возрастов в увлекательное путешествие по истории нашей цивилизации.


Эластичность. Гибкое мышление в эпоху перемен

Леонард Млодинов – американский физик и ученый, специалист по квантовой теории и теории хаоса, автор десятка книг, а также успешный популяризатор науки, легко и доходчиво объясняющий сухие научные факты. Существует два основных способа мышления: аналитическое, в котором преобладает логика, и эластичное, которое формирует новые идеи и неожиданные решения задач. Именно эластичное мышление позволяет человеку успешно приспосабливаться к безумному ритму жизни. Из книги вы узнаете: почему полезно выходить из зоны комфорта; как справляться с огромным количеством информации и не сойти с ума; как мозг создает смыслы и учится адаптации; как Мэри Шелли, Дэвид Боуи и Альберт Эйнштейн использовали эластичное мышление; почему игра Pokemon Go обрела небывалую популярность.


Рекомендуем почитать
Вероятности и неприятности. Математика повседневной жизни

Книга познакомит вас с повседневными приложениями теории вероятностей и математической статистики, мягко вводя в мир нешкольной математики. Лейтмотивом изложения станут широко известные «законы Мёрфи», или «законы подлости», — несерьезные досадные закономерности, наблюдаемые каждый день, но имеющие, однако, объективное математическое обоснование. Кроме разнообразных примеров из области теории вероятностей, в книге немало говорится и о смежных разделах: теории мер, марковских цепях, стохастических процессах, теории очередей, динамическом хаосе и т. п. Эта книга подойдет и школьнику, которому не терпится попасть в университет, и студенту, недоумевающему: «Куда я попал?», — и преподавателю, которому нужны оригинальные живые примеры, а также просто любопытному читателю, желающему развить навыки математического мышления, чтобы научиться отсеивать информационный шум и мусор в потоке новостей.


Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.


Пятьсот двадцать головоломок

Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.


Геометрия: Планиметрия в тезисах и решениях. 9 класс

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.


Как постепенно дошли люди до настоящей арифметики

В тексте используется дореволюционная орфография. Если у вас не отображаются символы «ять» и другие, установите шрифт Palatino Linotype, или какой‐нибудь свободный шрифт с их поддержкойВикитекаВсякому, кто любитъ свой предметъ, бываетъ интересно знать, какъ онъ начался, какимъ путемъ онъ развивался, и какъ онъ вылился въ свою послѣднюю форму. Въ этой книжкѣ изложена исторія ариѳметики, и очерки ея назначены для тѣхъ, кто чувствуетъ расположеніе къ математикѣ. Юнымъ математикамъ я прежде всего назначаю свой трудъ.