Евклидово окно - [68]

Шрифт
Интервал

В тот год один старшекурсник представил Шварцу нового юного коллегу по фамилии Млодинов. Когда Шварц вышел, старшекурсник покачал головой. «Он лектор, а не настоящий профессор. Девять лет тут уже, а все никак постоянное место не получит». Смешок. «Работает над этой своей безумной теорией в двадцати шести измерениях». Вообще-то старшекурсник заблуждался: все начиналось, да, с теории двадцати шести измерений, но с тех пор она усохла до десяти. Все равно многовато.

Долгие годы теория кишела и другими «затруднениями», как их называют физики, — содержала предсказания, мало походившие на реальность. Отрицательными вероятностями. Частицами мнимых масс, движущимися быстрее света. И все равно Шварц оставался предан своей теории — ценой собственной карьеры.

Есть такой фильм, «10 причин моей ненависти»[276], он нравится Алексею. Это кино о группе старшеклассников, в котором героиня выходит к доске и читает всему классу стихотворение о десяти причинах ее ненависти к бойфренду, хотя на самом деле это стихотворение о ее любви к нему. Легко представить Джона Шварца, читающего подобный опус, посвященный его теории: он любил ее и не бросал — вопреки, а иногда и благодаря ее трогательным маленьким погрешностям.

Шварц видел в струнной теории нечто такое, чего не замечали прочие: некую глубинную математическую красоту, которая, по его ощущениям, не могла быть случайна. То, что развитие теории давалось с большим трудом, никак его не обескураживало. Он пытался решить задачу, о которую преткнулся Эйнштейн и все остальные после него: согласование квантовой теории с относительностью. И простого решения не предвиделось.

В отличие от теории относительности, первая обобщенная квантовая теория не рождалась десятки лет после открытия Планком квантования энергетических уровней. Все изменилось в 1925–1927 годах благодаря усилиям австрийца Эрвина Шрёдингера и немца Вернера Гейзенберга. Независимо друг от друга они открыли — возможно, точнее будет сказать «изобрели» — элегантные теории, объяснявшие, как заменить ньютоновы законы движения другими уравнениями, включавшими принципы квантовой теории, выведенные за последние несколько десятилетий. Две новые теории получили названия волновой механики и матричной механики соответственно. Как и в случае специальной теории относительности, следствия квантовой теории были заметны лишь в отрыве от повседневной жизни, на сей раз — не из-за бешеной скорости, а из-за малости размеров. Поначалу не только связь между двумя теориями и теорией относительности оставалась невнятной, но и их отношения между собой. Математически они выглядели столь же разными, сколь их первооткрыватели.

Вообразите Гейзенберга — добропорядочного немца, в идеальном костюме и при галстуке, на столе у него полный порядок. Постепенно превратившись из «всего лишь националиста» в «умеренного пронациста», Гейзенберг возглавил работу Германии над атомной бомбой. После войны он пытался отбиваться от издевок методом «ну-да-но-я-на-самом-деле-это-все-через-силу». Гейзенберг создал свою теорию, активно опираясь на экспериментальные данные, в сотрудничестве с коллегой-физиком Максом Борном и будущим штурмовиком Паскуалем Йорданом[277]. Вместе они разработали теорию, объединившую разрозненные физические правила и закономерности, наблюдавшиеся физиками более двадцати лет. Физик Мёрри Гелл-Манн описывал этот процесс так[278]: «Они слепили это все воедино[279]. Выработали всякие правила сложения. Как-то раз Борн был в отпуске, а они при помощи этих правил переизобрели матричное умножение. Они и не знали, что это. Когда Борн вернулся, он, должно быть сказал: “Постойте, господа, это же теория матриц”». Физика привела их к рабочей математической структуре.

А вот Шрёдингера представьте Дон Жуаном физики. Он как-то писал: «Не бывало такого, чтобы женщина переспала со мной и не пожелала бы, как следствие, прожить со мной всю ее жизнь»[280]. Тут самое время и место заметить, что Гейзенберг, а не Шрёдингер предложил принцип неопределенности.

В своем подходе к квантовой теории Шрёдингер более полагался на математические рассуждения, нежели на экспериментальные данные, как у Гейзенберга. Представьте серьезного Шрёдингера — с легчайшей тенью улыбки на лице, лохматого, почти как Эйнштейн. Он задумчиво что-то пишет во вполне школьную тетрадку. Пошумите — и он, нимало не заботясь об этикете, засунет в каждое ухо по жемчужине, чтобы не отвлекаться. Но одной тишины его творчеству мало. Его волновая теория появится не во время протяженного монашеского отшельничества, а в разгар того, что принстонский математик Герман Вайль назвал «поздним эротическим всплеском его жизни»[281].

Шрёдингер впервые записал свое волновое уравнение на свидании на горнолыжном курорте, пока его жена была в отъезде в Цюрихе. Говорят, что общество его загадочной визави питало его безумную плодовитость целый год. Такое сотрудничество обычно не отмечают в статьях; не было соавторов и у статей Шрёдингера. Имя этого конкретного соавтора, похоже, утеряно навсегда.

Хотя у Шрёдингера условия труда были получше, эквивалентность его волновой механики и матричной механики Гейзенберга вскоре доказал английский физик Поль Дирак. Единая теория, которую они представляли, получила нейтральное название


Еще от автора Леонард Млодинов
Кратчайшая история времени

Природе пространства и времени, происхождению Вселенной посвящена эта научно-популярная книга знаменитого английского астрофизика Стивена Хокинга, написанная в соавторстве с популяризатором науки Леонардом Млодиновым. Это новая версия всемирно известной «Краткой истории времени», пополненная последними данными космологии, попытка еще проще и понятнее изложить самые сложные теории.


Высший замысел

Соавторство Стивена Хокинга и Леонарда Млодинова, специалиста по квантовой теории и теории хаоса, являет собой успешный творческий тандем, что уже подтвердило их совместное произведение «Кратчайшая история времени», которое имело небывалый успех.«Высший замысел» — новая захватывающая работа этих удивительных авторов.Цель этой книги — дать ответы на волнующие нас вопросы существования Вселенной, ответы, основанные на последних научных открытиях и теоретических разработках. Они приводят нас к уникальной теории, описывающей огромную, изумительно разнообразную Вселенную, — к теории, которая позволит нам разгадать Высший замысел.


Великий замысел

Все мы существуем лишь непродолжительный период времени и на его протяжении способны исследовать лишь небольшую часть мироздания. Но люди — существа любопытные. Мы задаемся вопросами, мы ищем на них ответы. Живя в этом огромном мире, который бывает то добрым, то жестоким, и вглядываясь в бесконечное небо, люди постоянно задаются множеством вопросов: Как мы можем понять мир, в котором оказались? Как ведёт себя Вселенная? Какова природа реальности? Откуда всё это возникло? Нуждалась ли Вселенная в создателе? Многие из нас не тратят много времени на эти вопросы, но почти все из нас когда-либо об этом задумывались.Один из самых известных ученых нашего времени — Стивен Хокинг написал книгу, продолжающую тему, начатую в его предыдущих книгах.


(Нео)сознанное. Как бессознательный ум управляет нашим поведением

Все наши суждения — от политических предпочтений до оценки качества бытовых услуг — отражают работу нашего ума на двух ярусах: сознательном и неосознанном, скрытом от нашего внимания. Неповторимый стиль Леонарда Млодинова — живой, ясный язык, юмор и способность объяснять сухие научные факты так, чтобы они были понятны самой широкой аудитории — позволяет нам понять, как неосознанное влияет на нашу жизнь, по-новому взглянуть на отношения с друзьями, супругами, пересмотреть представления о себе самих и о мире вокруг.vk.com/psyfb2.


Эластичность. Гибкое мышление в эпоху перемен

Леонард Млодинов – американский физик и ученый, специалист по квантовой теории и теории хаоса, автор десятка книг, а также успешный популяризатор науки, легко и доходчиво объясняющий сухие научные факты. Существует два основных способа мышления: аналитическое, в котором преобладает логика, и эластичное, которое формирует новые идеи и неожиданные решения задач. Именно эластичное мышление позволяет человеку успешно приспосабливаться к безумному ритму жизни. Из книги вы узнаете: почему полезно выходить из зоны комфорта; как справляться с огромным количеством информации и не сойти с ума; как мозг создает смыслы и учится адаптации; как Мэри Шелли, Дэвид Боуи и Альберт Эйнштейн использовали эластичное мышление; почему игра Pokemon Go обрела небывалую популярность.


Стивен Хокинг. О дружбе и физике

Стивен Хокинг был одним из наиболее влиятельных физиков современности, и его жизнь затронула и отчасти поменяла жизни миллионов людей. Леонард Млодинов обращается к тем двум десятилетиям, в которые он был коллегой и другом ученого, чтобы нарисовать его портрет – уникальный и очень личный. Он знакомит с Хокингомгением, ломающим голову над загадками Вселенной и всего мироздания и в конце концов формулирующим смелую теорию об излучении черных дыр, которая заставила космологов и физиков посмотреть на проблему происхождения космоса с абсолютно нового угла.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.