Евклидово окно - [45]

Шрифт
Интервал

. Вскоре после этого математики вроде Бельтрами и Пуанкаре предложили свои новые модели и подходы к геометрии. В 1894 году итальянский логик Джузеппе Пеано выдвинул новый набор аксиом для определения евклидовой геометрии[189]. В 1899 году Гильберт, не знакомый с работами Пеано, выдал свою версию формулировки геометрии — в наиболее распространенном ныне виде[190].

Гильберт полностью посвятил себя прояснению фундаментальных основ геометрии (а впоследствии помог развить общую теорию относительности Эйнштейна). Он многократно пересматривал свои формулировки — до самой смерти в 1943 году. Первый шаг его метода — превращение неявных допущений Евклида в развернутые утверждения. В свою систему Гильберт — по крайней мере в седьмом издании своего труда в 1930 году, — включил восемь не определенных понятий и увеличил число аксиом Евклида с десяти (включая общие утверждения) до двадцати[191]. Аксиомы Гильберта разделили на четыре группы. Они включают в себя не опознанные Евклидом допущения вроде тех, что мы уже рассмотрели:

Аксиома I-3: Каждой прямой a принадлежат по крайней мере две точки. Существуют по крайней мере три точки, не принадлежащие одной прямой.


Аксиома II-3: Среди любых трех точек, лежащих на одной прямой, существует не более одной точки, лежащей между двумя другими.

Гильберт и другие ученые доказали, что все свойства евклидова пространства можно вывести из этих аксиом.

* * *

Революция искривленного пространства глубоко повлияла на все области математики. Примерно со времен Евклида и до работ Гаусса и Римана, обнаруженных посмертно, математика была по большей части дисциплиной прагматической. Евклидова структура воспринималась как описание физического пространства. Математика в некотором смысле была разновидностью физики. Вопросы непротиворечивости математических теорий казались порожними — доказательства следовало искать в физическом мире. Но к 1900 году математики осознали, что аксиомы — спорные утверждения, они суть всего лишь основа системы, следствия которой необходимо изучать в некоем подобии умозрительной игры. Внезапно математические пространства превратились в абстрактные логические конструкты. Природа физического пространства стала самостоятельным предметом, вопросом физики, а не математики.

Перед математиками встал вопрос совсем нового свойства: доказательство логической непротиворечивости их построений. Понятие доказательства, переместившееся за последние века развития расчетных методик на заднее сиденье, вновь стало главенствующим. Состоятельна ли геометрия Евклида? Самый лобовой способ доказать непротиворечивость логической системы — доказать все мыслимые теоремы и продемонстрировать, что ни одна не противоречит другой. Поскольку существует бесконечное количество возможных теорем, такой подход годится лишь тем, кто планирует жить вечно. Гильберт опробовал иную тактику. Как и Декарт с Риманом, Гильберт определили точки в пространстве через числа. В случае с двухмерным пространством, например, каждая точка соответствует паре действительных чисел. Превратив точки в числа, Гильберт смог перевести все фундаментальные геометрические понятия и аксиомы в арифметические. Так доказательство любой геометрической теоремы переводится на язык арифметических или алгебраических действий с координатами. А поскольку любое геометрическое доказательство следует логически из аксиом, арифметическая интерпретация должна вытекать из аксиом, облеченных в арифметическую форму. Если в геометрии возникает противоречие, оно проявится и при переводе на язык арифметики, а если арифметика непротиворечива, стало быть, стройны и гильбертовы формулировки евклидовой геометрии (для неевклидовых геометрий эти действия тоже были позднее проделаны). Яснее некуда? Хотя в итоге Гильберту и не удалось доказать абсолютную непротиворечивость геометрии, доказать относительную непротиворечивость он все-таки смог.

Из-за бесконечности числа возможных теорем абсолютная непротиворечивость геометрии, арифметики и, если уж на то пошло, всей математики — дело куда более трудоемкое. Чтобы разобраться и с этим, математики изобрели абстрактную теорию объектов, имеющую с ними дело на самом общем уровне, независимо от всяких особенностей того, чем они на самом деле являются. Эта теория, которую ныне преподают в большинстве общеобразовательных школ, называется теорией множеств.

И все-таки даже самая простая теория множеств сталкивается с путаными парадоксами: один такой был опубликован в 1908 году в малоизвестном журнале «Abhandlung der Friesschen Schule» Куртом Греллингом и Леонардом Нелсоном. Греллинг и Нелсон рассматривают множество слов. Возьмем, во-первых, множество всех прилагательных, описывающих сами слова. Например, слово «двадцатиоднобуквенный» само, да, состоит из двадцати одной буквы, а прилагательное «многосложный» — многосложно. В пику этому множеству есть множество всех прилагательных, которые себя не описывают. На ум почему-то приходят слова типа «хорошо написанный», «поразительный» и «другу рекомендуемый» (если в этой книге и есть хоть одно предложение, которое стоит вызубрить, — вот оно). Последнее множество называется гетерологическим — вероятно, оттого, что «гетерологический» само по себе многосложно.


Еще от автора Леонард Млодинов
Кратчайшая история времени

Природе пространства и времени, происхождению Вселенной посвящена эта научно-популярная книга знаменитого английского астрофизика Стивена Хокинга, написанная в соавторстве с популяризатором науки Леонардом Млодиновым. Это новая версия всемирно известной «Краткой истории времени», пополненная последними данными космологии, попытка еще проще и понятнее изложить самые сложные теории.


Высший замысел

Соавторство Стивена Хокинга и Леонарда Млодинова, специалиста по квантовой теории и теории хаоса, являет собой успешный творческий тандем, что уже подтвердило их совместное произведение «Кратчайшая история времени», которое имело небывалый успех.«Высший замысел» — новая захватывающая работа этих удивительных авторов.Цель этой книги — дать ответы на волнующие нас вопросы существования Вселенной, ответы, основанные на последних научных открытиях и теоретических разработках. Они приводят нас к уникальной теории, описывающей огромную, изумительно разнообразную Вселенную, — к теории, которая позволит нам разгадать Высший замысел.


Великий замысел

Все мы существуем лишь непродолжительный период времени и на его протяжении способны исследовать лишь небольшую часть мироздания. Но люди — существа любопытные. Мы задаемся вопросами, мы ищем на них ответы. Живя в этом огромном мире, который бывает то добрым, то жестоким, и вглядываясь в бесконечное небо, люди постоянно задаются множеством вопросов: Как мы можем понять мир, в котором оказались? Как ведёт себя Вселенная? Какова природа реальности? Откуда всё это возникло? Нуждалась ли Вселенная в создателе? Многие из нас не тратят много времени на эти вопросы, но почти все из нас когда-либо об этом задумывались.Один из самых известных ученых нашего времени — Стивен Хокинг написал книгу, продолжающую тему, начатую в его предыдущих книгах.


(Нео)сознанное. Как бессознательный ум управляет нашим поведением

Все наши суждения — от политических предпочтений до оценки качества бытовых услуг — отражают работу нашего ума на двух ярусах: сознательном и неосознанном, скрытом от нашего внимания. Неповторимый стиль Леонарда Млодинова — живой, ясный язык, юмор и способность объяснять сухие научные факты так, чтобы они были понятны самой широкой аудитории — позволяет нам понять, как неосознанное влияет на нашу жизнь, по-новому взглянуть на отношения с друзьями, супругами, пересмотреть представления о себе самих и о мире вокруг.vk.com/psyfb2.


Эластичность. Гибкое мышление в эпоху перемен

Леонард Млодинов – американский физик и ученый, специалист по квантовой теории и теории хаоса, автор десятка книг, а также успешный популяризатор науки, легко и доходчиво объясняющий сухие научные факты. Существует два основных способа мышления: аналитическое, в котором преобладает логика, и эластичное, которое формирует новые идеи и неожиданные решения задач. Именно эластичное мышление позволяет человеку успешно приспосабливаться к безумному ритму жизни. Из книги вы узнаете: почему полезно выходить из зоны комфорта; как справляться с огромным количеством информации и не сойти с ума; как мозг создает смыслы и учится адаптации; как Мэри Шелли, Дэвид Боуи и Альберт Эйнштейн использовали эластичное мышление; почему игра Pokemon Go обрела небывалую популярность.


Стивен Хокинг. О дружбе и физике

Стивен Хокинг был одним из наиболее влиятельных физиков современности, и его жизнь затронула и отчасти поменяла жизни миллионов людей. Леонард Млодинов обращается к тем двум десятилетиям, в которые он был коллегой и другом ученого, чтобы нарисовать его портрет – уникальный и очень личный. Он знакомит с Хокингомгением, ломающим голову над загадками Вселенной и всего мироздания и в конце концов формулирующим смелую теорию об излучении черных дыр, которая заставила космологов и физиков посмотреть на проблему происхождения космоса с абсолютно нового угла.


Рекомендуем почитать
В поисках бесконечности

За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.


Математика на ходу

Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.


Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.