Евклидово окно - [46]

Шрифт
Интервал

Красота? Но есть, однако, закавыка: а «гетерологический» — гетерологическое слово? Если да, значит, оно себя описывает, следовательно, оно таковым не является. Раз оно таковым не является, значит, оно себя не описывает, а следовательно — является. Вот что математики называют парадоксом; для не-математика это всего лишь знакомая безвыигрышная ситуация (понятие, придуманное математиками, дай им бог здоровья)[192].

* * *

В 1903 году Бетран Расселл, без пяти минут лорд Расселл, попытался навести порядок, предположив в своей скромной книге под названием «Принципы математики», что вся математика должна выводиться из логики. Совместно со своим коллегой по Оксфорду Алфредом Нортом Уайтхедом он попытался добиться такой выводимости — или хотя бы показать, как это сделать, — в трехтомном магнум-опусе, изданном между 1910 и 1913 годами. Вероятно, потому, что этот труд был серьезнее публикации 1903 года, он получил латинское название «Principia Mathematica». В «Principia» Расселл и Уайтхед заявили, что свели всю математику к единой системе основных аксиом, из которых можно доказать все теоремы математики, подобно евклидовой системе применительно к геометрии. В их системе даже такие фундаментальные понятия как числа рассматривались как эмпирические конструкты, которые необходимо обосновывать более глубокими аксиоматическими структурами.

Гильберт отнесся к этим заявлениям скептически. Он подначил математиков строго доказать успешность программы Расселла и Уайтхеда. Этот вопрос отложили насовсем в 1931 году шокирующей теоремой Курта Гёделя[193]: он доказал, что в системе достаточной сложности — в теории чисел, к примеру, — должно существовать утверждение, чью истинность или ложность невозможно доказать. Это уничтожает утверждение Расселла и Уайтхеда: они не только не показали, как именно все математические теоремы можно вывести из логики, но и в принципе не могли бы этого сделать!

Математики продолжают работать над фундаментом своей науки, но со времен Гёделя никому еще не удалось заметно изменить общую картину. По-прежнему не существует общепринятого подхода к тому, что начал Евклид: к аксиомам математики.

Между тем сила математики — не в одних лишь умозрительных играх, и это ни в чем не очевидно так, как в применении Эйнштейном свежеоткрытых типов математических пространств к тому, в котором мы живем. Хоть и серьезно перемоделированная, геометрия продолжила быть окном видения нашей Вселенной.

Часть IV. История Эйнштейна

Отчего пространство искривляется?


У пространства появилось новое измерение — в ХХ веке оно взрывается пространством-временем и превращает служащего патентного бюро в героя столетия.

Глава 21. Революция со скоростью света

Гаусс и Риман показали, что пространство может искривляться, и разработали математику, необходимую для описания этого явления. Далее встал вопрос: а в каком пространстве обитаем мы? Или — еще глубже: что определяет форму пространства?

Изящный и точный ответ, данный Эйнштейном в 1915 году, на самом деле впервые в общих чертах был предложен еще в 1854-м самим Риманом:

Вопрос обоснованности геометрии… связан с вопросом внутренней причины метрических взаимоотношений пространства… нам следует искать причину этих метрических взаимоотношений вне самого пространства, во внешних силах, воздействующих на него…[194]

Что отталкивает объекты друг от друга или сближает их? Риман, оказалось, сильно обогнал свое время и поэтому не смог развить на основании своего прозрения внятную теорию — он ушел настолько далеко вперед, что даже сами слова его нельзя было оценить по достоинству. Однако шестнадцать лет спустя один математик все же обратил на них внимание.

21 февраля 1870 года Уильям Кингдон Клиффорд представил Кембриджскому философскому обществу статью под названием «О пространственной теории материи». Клиффорду тогда было двадцать пять — как и Эйнштейну, когда он опубликовал свою первую статью по специальной теории относительности. В своей статье Клиффорд смело заявил[195]:

Я утверждаю: 1. Малые области пространства подобны в своей природе небольшим холмам на поверхности, которая в целом плоская; 2. Свойство кривизны, или искажения, подобно волне, постоянно передается от одной области пространства к другой и далее; 3. Переменность кривизны пространства — вот что на самом деле происходит в процессе того явления, которое мы называем движением материи…

Выводы Клиффорда далеко превзошли римановы в детализации. Что вряд ли заметили бы, да вот поди ж ты: он все понял правильно. Современный физик, прочтя слова Клиффорда, сказал бы: «Откуда он знал?» Эйнштейн пришел к сходным заключениям лишь через годы тщательных логических построений. А у Клиффорда не было даже теории. Ему, тем не менее, удалось интуитивно прийти к столь подробным выводам — его, Римана и Эйнштейна вела одна и та же математическая мысль: если объекты в свободном движении перемещаются по прямым, характерным для евклидова пространства, могут ли возникнуть другие виды движения, обусловленные кривизной неевклидова пространства? И вот наконец именно последовательные шаги доказательства Эйнштейна, основанные на


Еще от автора Леонард Млодинов
Кратчайшая история времени

Природе пространства и времени, происхождению Вселенной посвящена эта научно-популярная книга знаменитого английского астрофизика Стивена Хокинга, написанная в соавторстве с популяризатором науки Леонардом Млодиновым. Это новая версия всемирно известной «Краткой истории времени», пополненная последними данными космологии, попытка еще проще и понятнее изложить самые сложные теории.


Высший замысел

Соавторство Стивена Хокинга и Леонарда Млодинова, специалиста по квантовой теории и теории хаоса, являет собой успешный творческий тандем, что уже подтвердило их совместное произведение «Кратчайшая история времени», которое имело небывалый успех.«Высший замысел» — новая захватывающая работа этих удивительных авторов.Цель этой книги — дать ответы на волнующие нас вопросы существования Вселенной, ответы, основанные на последних научных открытиях и теоретических разработках. Они приводят нас к уникальной теории, описывающей огромную, изумительно разнообразную Вселенную, — к теории, которая позволит нам разгадать Высший замысел.


Великий замысел

Все мы существуем лишь непродолжительный период времени и на его протяжении способны исследовать лишь небольшую часть мироздания. Но люди — существа любопытные. Мы задаемся вопросами, мы ищем на них ответы. Живя в этом огромном мире, который бывает то добрым, то жестоким, и вглядываясь в бесконечное небо, люди постоянно задаются множеством вопросов: Как мы можем понять мир, в котором оказались? Как ведёт себя Вселенная? Какова природа реальности? Откуда всё это возникло? Нуждалась ли Вселенная в создателе? Многие из нас не тратят много времени на эти вопросы, но почти все из нас когда-либо об этом задумывались.Один из самых известных ученых нашего времени — Стивен Хокинг написал книгу, продолжающую тему, начатую в его предыдущих книгах.


(Нео)сознанное. Как бессознательный ум управляет нашим поведением

Все наши суждения — от политических предпочтений до оценки качества бытовых услуг — отражают работу нашего ума на двух ярусах: сознательном и неосознанном, скрытом от нашего внимания. Неповторимый стиль Леонарда Млодинова — живой, ясный язык, юмор и способность объяснять сухие научные факты так, чтобы они были понятны самой широкой аудитории — позволяет нам понять, как неосознанное влияет на нашу жизнь, по-новому взглянуть на отношения с друзьями, супругами, пересмотреть представления о себе самих и о мире вокруг.vk.com/psyfb2.


Эластичность. Гибкое мышление в эпоху перемен

Леонард Млодинов – американский физик и ученый, специалист по квантовой теории и теории хаоса, автор десятка книг, а также успешный популяризатор науки, легко и доходчиво объясняющий сухие научные факты. Существует два основных способа мышления: аналитическое, в котором преобладает логика, и эластичное, которое формирует новые идеи и неожиданные решения задач. Именно эластичное мышление позволяет человеку успешно приспосабливаться к безумному ритму жизни. Из книги вы узнаете: почему полезно выходить из зоны комфорта; как справляться с огромным количеством информации и не сойти с ума; как мозг создает смыслы и учится адаптации; как Мэри Шелли, Дэвид Боуи и Альберт Эйнштейн использовали эластичное мышление; почему игра Pokemon Go обрела небывалую популярность.


Стивен Хокинг. О дружбе и физике

Стивен Хокинг был одним из наиболее влиятельных физиков современности, и его жизнь затронула и отчасти поменяла жизни миллионов людей. Леонард Млодинов обращается к тем двум десятилетиям, в которые он был коллегой и другом ученого, чтобы нарисовать его портрет – уникальный и очень личный. Он знакомит с Хокингомгением, ломающим голову над загадками Вселенной и всего мироздания и в конце концов формулирующим смелую теорию об излучении черных дыр, которая заставила космологов и физиков посмотреть на проблему происхождения космоса с абсолютно нового угла.


Рекомендуем почитать
В поисках бесконечности

За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.


Математика на ходу

Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.


Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.