Евклидово окно - [43]
Даже в математике иногда полезно нарушать законы. Риман стал Розой Паркс, отказавшейся пересесть в хвост автобуса[182]: он поставил под вопрос не неправедное, но неоправданное. Он постановил, что второй постулат описывает не существование сколь угодно длинных отрезков, а лишь гарантирует, что у прямых нет конца, а это верно для больших кругов. Математический Верховный суд — сообщество математиков, — услышав это, почесал в затылках. Каковы последствия новой интерпретации закона юным Риманом? Не противоречит ли это другим законам? Можно ли сделать его не противоречащим?
Вторым постулатом нестыковки не исчерпались. Риманово понятие прямой привело к другим затруднениям, которым Риман не имел объяснений. Например, большие круги нарушают допущение, что две прямые могут пересекаться лишь в одной точке. Как и линии долгот, пересекающиеся на обоих полюсах, все большие круги пересекаются в двух точках на противоположных сторонах сферы.
Понятие промежуточности тоже оказалось непросто интерпретировать. Евклид основывал это понятие на первом постулате:
1. От всякой точки до всякой точки можно провести прямую.
Чтобы найти точку между двумя другими, Евклид рисовал отрезок, соединяющий эти две точки. Любая точка (отличная от концевых) на этом отрезке находится «между» двумя концевыми. Каверза модели Римана заключается в том, что любые две точки можно соединить по окружности двумя способами. Индонезия — она между экваториальной Африкой и экваториальной Южной Америкой? Чтобы ответить на этот вопрос, можно провести линию вдоль экватора, соединяющую два континента, и проверить, проходит ли она через Индонезию. Но в рамках римановой модели можно попасть из Южной Америки в Африку, отправившись хоть на запад, хоть на восток. Один маршрут проходит через Индонезию, а другой — нет.
Из-за этой неопределенности все евклидовы доказательства применительно к земному шару, связанные с построением отрезков между точками, грешат негодными формулировками. А это приводит к причудливым последствиям. Например, представьте сферическую вселенную Римана с радиусом в 40, а не 4000 миль, как у Земли. В один погожий день глянете вы вперед — и увидите собственный зад. А этот самый зад — он перед вами или позади вас? Или возьмем обруч. Его радиус — 1 метр. Вот крутите вы обруч на талии и спрашиваете: внутри вы обруча или нет? Вроде бы очевидно, что да. Теперь мысленно увеличьте обруч — до размеров гоночной трассы, миля в ширину. Для обруча великоват, но по сравнению с радиусом планеты в 4000 миль — мизер. Стоя в центре, вы все еще можете с уверенностью утверждать, что вы — внутри. А теперь увеличьте обруч до радиуса в 4000 миль. Обруч опоясал планету, как экватор, и тут-то вдруг ваше положение по отношению к обручу становится спорным: вы внутри или снаружи? А если еще больше увеличить радиус обруча, чтобы его окружность раздалась от вас во все стороны, — и тут он вдруг на самом деле схлопывается . В конце концов он окажется тем же, каким мы впервые его представили, — в метр радиусом, но его центр теперь находится в точке на другой стороне мира от вас. И вроде бы вы получаетесь снаружи его. Как можно переместиться изнутри наружу, всего лишь увеличивая размеры обруча? С низложением понятия «между» понятия «сзади» и «спереди», «внутри» и «снаружи» более не просты. Таковы противоречия наивного эллиптического пространства.
Избавиться от этих затруднений можно лишь путем аккуратного переопределения многих понятий. Как обычно, Гаусс предвидел и это. В 1832 году он писал Вольфгангу Бойяи: «В полном своем развитии смысл слов вроде “между” должен основываться на ясных понятиях, которые можно добыть, но я их пока не обрел»[183]. В этом Риман ему тоже не помог. Но, сосредоточившись в основном на малых областях поверхности, Риман глобальными противоречиями вроде тех, что мы только что обсудили, похоже, не интересовался и не боялся их. И, невзирая на эти открытые вопросы, лекция Римана считается одним из шедевров математики. Но все же из-за этих неувязок она не озарила вселенную математики подобно фотонной торпеде[184]. Гаусс вскоре после этой лекции умер. Риман продолжил разбираться в вопросах местной структуры, нежели широкомасштабной геометрии пространства, и его работа не имела серьезного прижизненного научного влияния.
В 1857 году в тридцать один год Риман в конце концов стал ассистентом профессора — с унылым жалованьем, приблизительно эквивалентным тремстам долларов в год. На это ученый жил сам и поддерживал трех своих сестер, однако самая младшая, Мари, вскоре умерла. В 1859 году умер Дирихле, заменивший Гаусса на его посту, и Риман сам занял место Гаусса. Три года спустя, в тридцать шесть, он женился. На следующий год у него родилась дочка. Теперь уже с приличным достатком и молодой семьей жизнь Римана вроде бы начала налаживаться. Но, увы, ненадолго. Он подхватил плеврит, переросший в туберкулез, который и добил его — как и его сестер в юные годы — всего в тридцать девять.
Работа Римана в дифференциальной геометрии стала краеугольным камнем общей теории относительности Эйнштейна. Не прояви Риман неосмотрительность, включив в свой список тем геометрию, и не будь Гаусс таким настырным, выбрав эту тему, математический аппарат Эйнштейна, потребный для его революции в физике, не существовал бы. Но еще до начала переворота труды Римана по эллиптическим пространствам произвели не менее мощное действие на мир математики. Необходимость видоизменять не только постулат параллельности, но и прочие, оказалась равносильна перетиранию прядей в веревке — и веревка вскоре лопнула. И лишь тогда математики осознали, что на этой веревке висела не только геометрия, но и вся математика.
Природе пространства и времени, происхождению Вселенной посвящена эта научно-популярная книга знаменитого английского астрофизика Стивена Хокинга, написанная в соавторстве с популяризатором науки Леонардом Млодиновым. Это новая версия всемирно известной «Краткой истории времени», пополненная последними данными космологии, попытка еще проще и понятнее изложить самые сложные теории.
Соавторство Стивена Хокинга и Леонарда Млодинова, специалиста по квантовой теории и теории хаоса, являет собой успешный творческий тандем, что уже подтвердило их совместное произведение «Кратчайшая история времени», которое имело небывалый успех.«Высший замысел» — новая захватывающая работа этих удивительных авторов.Цель этой книги — дать ответы на волнующие нас вопросы существования Вселенной, ответы, основанные на последних научных открытиях и теоретических разработках. Они приводят нас к уникальной теории, описывающей огромную, изумительно разнообразную Вселенную, — к теории, которая позволит нам разгадать Высший замысел.
Все мы существуем лишь непродолжительный период времени и на его протяжении способны исследовать лишь небольшую часть мироздания. Но люди — существа любопытные. Мы задаемся вопросами, мы ищем на них ответы. Живя в этом огромном мире, который бывает то добрым, то жестоким, и вглядываясь в бесконечное небо, люди постоянно задаются множеством вопросов: Как мы можем понять мир, в котором оказались? Как ведёт себя Вселенная? Какова природа реальности? Откуда всё это возникло? Нуждалась ли Вселенная в создателе? Многие из нас не тратят много времени на эти вопросы, но почти все из нас когда-либо об этом задумывались.Один из самых известных ученых нашего времени — Стивен Хокинг написал книгу, продолжающую тему, начатую в его предыдущих книгах.
Все наши суждения — от политических предпочтений до оценки качества бытовых услуг — отражают работу нашего ума на двух ярусах: сознательном и неосознанном, скрытом от нашего внимания. Неповторимый стиль Леонарда Млодинова — живой, ясный язык, юмор и способность объяснять сухие научные факты так, чтобы они были понятны самой широкой аудитории — позволяет нам понять, как неосознанное влияет на нашу жизнь, по-новому взглянуть на отношения с друзьями, супругами, пересмотреть представления о себе самих и о мире вокруг.vk.com/psyfb2.
Леонард Млодинов – американский физик и ученый, специалист по квантовой теории и теории хаоса, автор десятка книг, а также успешный популяризатор науки, легко и доходчиво объясняющий сухие научные факты. Существует два основных способа мышления: аналитическое, в котором преобладает логика, и эластичное, которое формирует новые идеи и неожиданные решения задач. Именно эластичное мышление позволяет человеку успешно приспосабливаться к безумному ритму жизни. Из книги вы узнаете: почему полезно выходить из зоны комфорта; как справляться с огромным количеством информации и не сойти с ума; как мозг создает смыслы и учится адаптации; как Мэри Шелли, Дэвид Боуи и Альберт Эйнштейн использовали эластичное мышление; почему игра Pokemon Go обрела небывалую популярность.
Стивен Хокинг был одним из наиболее влиятельных физиков современности, и его жизнь затронула и отчасти поменяла жизни миллионов людей. Леонард Млодинов обращается к тем двум десятилетиям, в которые он был коллегой и другом ученого, чтобы нарисовать его портрет – уникальный и очень личный. Он знакомит с Хокингомгением, ломающим голову над загадками Вселенной и всего мироздания и в конце концов формулирующим смелую теорию об излучении черных дыр, которая заставила космологов и физиков посмотреть на проблему происхождения космоса с абсолютно нового угла.
За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.
Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.