Евклидово окно - [41]

Шрифт
Интервал

Неевклида проверяет выполнение теоремы Пифагора:

Сумма квадратов катетов: 209


Квадрат гипотенузы: 209

Для достаточно маленьких треугольников все получается. У Неевклиды в голове уже созревают зачатки неевклидовой геометрии, и она отправляет своих учеников в еще одну, последнюю экспедицию.

На сей раз Алексею и Николаю предстоит пройти по морю от Нью-Йорка до Мадрида (40 °CШ, 04° ВД), т. е. практически строго на восток. Этот путь им нужно проделать не единократно, всякий раз слегка меняя маршрут и измеряя точную протяженность пути. Их задача, как некогда у Колумба, — выявить кратчайшее расстояние между этими заданными точками, или обнаружить геодезическую прямую. Работа эта — на несколько лет, но статья, которую потом можно опубликовать, обещает настоящий фурор.

Если плыть по прямой от Нью-Йорка до Мадрида, т. е. строго вдоль линии широты, выйдет ли маршрут кратчайшим? Нет. Оказывается, нужно плыть вдоль странной кривой, обозначенной на карте, сначала направляясь на северо-восток, а потом постепенно сворачивая на юг, покуда курс не выровняется на юго-восток. Той же траекторией катится шар для боулинга, если ничто ему не мешает, и мигрируют некоторые гениальные птицы[178], например, американские ржанки или таитийские кроншнепы. Так же натягивали от точки к точке веревку и двухмерные египетские умельцы-строители.

Все это легко понять, если представить, как выглядит Земля из космоса. «Строго на восток» в странствиях по глобусу не реализуется, поскольку направления «север» и «восток» — не фиксированные. При перемещении из Нью-Йорка в Мадрид направления, называемые «на восток» или «на север», вращаются в трехмерном пространстве. Кратчайшая траектория между Нью-Йорком и Мадридом — или между любыми другими двумя точками на земном шаре — кривая, называемая большим кругом (это круг на земном шаре, центр которого совпадает с центром Земли; это самые большие окружности, какие можно изобразить на земной поверхности, отсюда и название). Большие круги — аналоги линий Пуанкаре во вселенной Пуанкаре, линии, которые мы по привычке называем прямыми, и они выполняют роль прямых в евклидовых аксиомах. Линии широт — большие круги, равно как и экватор, но лишь он — кривая с постоянной широтой (центры всех остальных кругов с постоянной широтой располагаются выше или ниже по оси Земли).

>Нью-Йорк — Мадрид

Вид из космоса местным вроде Неевклиды не ведом. Для нее «центра Земли» не существует, а также не существует «космоса», и Гаусс доказал, что такое возможно. Неевклида, воодушевленная результатами Алексея и Николая, заключила бы, что пространство, в котором она живет, — неевклидово: не гиперболическое, а похожее на поверхность шара, т. е. эллиптическое.

В неевклидовом пространстве все большие круги пересекаются. Суммы углов в треугольнике всегда больше 180° (в гиперболическом пространстве — меньше). В треугольнике, образованном экватором и двумя линиями долгот, соединяющих экватор с Северным полюсом, к примеру, сумма углов составляет 270°. Как и в случае гиперболического, это пространство на малых расстояниях тоже смахивает на евклидово, оттого отклонения так долго и не замечали. Например, превышение суммы углов в треугольнике привычных 180° уменьшается по мере уменьшения самих треугольников.

Геометрия эллиптического пространства, называемая сферической, хорошо известна еще с античных времен. Большие круги еще тогда знали как геодезические. Геометрические формулы, описывающие части сферических треугольников, — уже обнаружены и применялись в картографии. Но эллиптические пространства не вписывались в евклидову парадигму, и открытие эллиптичности пространства земного шара досталось одному из учеников Гаусса — Георгу Фридриху Бернхарду Риману. Он совершил это открытие, когда жизнь Гаусса клонилось к закату, но именно оно, как никакое иное, в конце концов привело к революции искривленного пространства.


Глава 21. Повесть о двух инопланетянах

Георг Риман[179] родился в 1826 году в маленькой деревне Брезеленц, неподалеку от мест, где появился на свет Гаусс. В семье Риманов было шестеро детей. Двум его сестрам, да и ему самому, выпала судьба умереть молодыми. Его мать скончалась, когда он был еще мал. До десяти лет его обучал дома отец, лютеранский пастор. Риман больше всего любил историю, особенно — польского национального движения. Серьезный юный Георг явно не производил впечатления души компании — он ею и не был. Напротив — выказывал патологическую застенчивость и скромность. И гениальность. Приверженцы конспирологических теорий предположили бы, имея в виду Гаусса и Римана, что в начале XIX века под немецким Гамбургом некая высшая инопланетная раса основала колонию и подбросила двум нищим местным семьям гениальных младенцев. И хотя никаких анекдотов о гениальном детстве Римана, в отличие от детства Гаусса, не сохранилось, похоже, Риман уже тогда был чуточку умнее, чем положено всем нам.

Когда Риману исполнилось девятнадцать, директор его гимназии, человек по имени Шмальфус, дал ему кое-что занимательное — книгу Адриена Мари Лежандра[180]«Théorie des nombres»


Еще от автора Леонард Млодинов
Кратчайшая история времени

Природе пространства и времени, происхождению Вселенной посвящена эта научно-популярная книга знаменитого английского астрофизика Стивена Хокинга, написанная в соавторстве с популяризатором науки Леонардом Млодиновым. Это новая версия всемирно известной «Краткой истории времени», пополненная последними данными космологии, попытка еще проще и понятнее изложить самые сложные теории.


Высший замысел

Соавторство Стивена Хокинга и Леонарда Млодинова, специалиста по квантовой теории и теории хаоса, являет собой успешный творческий тандем, что уже подтвердило их совместное произведение «Кратчайшая история времени», которое имело небывалый успех.«Высший замысел» — новая захватывающая работа этих удивительных авторов.Цель этой книги — дать ответы на волнующие нас вопросы существования Вселенной, ответы, основанные на последних научных открытиях и теоретических разработках. Они приводят нас к уникальной теории, описывающей огромную, изумительно разнообразную Вселенную, — к теории, которая позволит нам разгадать Высший замысел.


Великий замысел

Все мы существуем лишь непродолжительный период времени и на его протяжении способны исследовать лишь небольшую часть мироздания. Но люди — существа любопытные. Мы задаемся вопросами, мы ищем на них ответы. Живя в этом огромном мире, который бывает то добрым, то жестоким, и вглядываясь в бесконечное небо, люди постоянно задаются множеством вопросов: Как мы можем понять мир, в котором оказались? Как ведёт себя Вселенная? Какова природа реальности? Откуда всё это возникло? Нуждалась ли Вселенная в создателе? Многие из нас не тратят много времени на эти вопросы, но почти все из нас когда-либо об этом задумывались.Один из самых известных ученых нашего времени — Стивен Хокинг написал книгу, продолжающую тему, начатую в его предыдущих книгах.


(Нео)сознанное. Как бессознательный ум управляет нашим поведением

Все наши суждения — от политических предпочтений до оценки качества бытовых услуг — отражают работу нашего ума на двух ярусах: сознательном и неосознанном, скрытом от нашего внимания. Неповторимый стиль Леонарда Млодинова — живой, ясный язык, юмор и способность объяснять сухие научные факты так, чтобы они были понятны самой широкой аудитории — позволяет нам понять, как неосознанное влияет на нашу жизнь, по-новому взглянуть на отношения с друзьями, супругами, пересмотреть представления о себе самих и о мире вокруг.vk.com/psyfb2.


Эластичность. Гибкое мышление в эпоху перемен

Леонард Млодинов – американский физик и ученый, специалист по квантовой теории и теории хаоса, автор десятка книг, а также успешный популяризатор науки, легко и доходчиво объясняющий сухие научные факты. Существует два основных способа мышления: аналитическое, в котором преобладает логика, и эластичное, которое формирует новые идеи и неожиданные решения задач. Именно эластичное мышление позволяет человеку успешно приспосабливаться к безумному ритму жизни. Из книги вы узнаете: почему полезно выходить из зоны комфорта; как справляться с огромным количеством информации и не сойти с ума; как мозг создает смыслы и учится адаптации; как Мэри Шелли, Дэвид Боуи и Альберт Эйнштейн использовали эластичное мышление; почему игра Pokemon Go обрела небывалую популярность.


Стивен Хокинг. О дружбе и физике

Стивен Хокинг был одним из наиболее влиятельных физиков современности, и его жизнь затронула и отчасти поменяла жизни миллионов людей. Леонард Млодинов обращается к тем двум десятилетиям, в которые он был коллегой и другом ученого, чтобы нарисовать его портрет – уникальный и очень личный. Он знакомит с Хокингомгением, ломающим голову над загадками Вселенной и всего мироздания и в конце концов формулирующим смелую теорию об излучении черных дыр, которая заставила космологов и физиков посмотреть на проблему происхождения космоса с абсолютно нового угла.


Рекомендуем почитать
Теорема века. Мир с точки зрения математики

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!


Таблица умножения. Как запомнить. Новый метод

Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)


Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления

Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.


Математика на ходу

Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.