Этюды о свете - [8]

Шрифт
Интервал

Во-первых, лучистая энергетика уже миллионы лет действует в мире растений и животных, впитывающих живительные лучи Солнца, и не только его.

Во-вторых, существует и успешно развивается гелиоэнергетика — как на земных станциях, так и на космических аппаратах, где она является частью штатной технологии жизнеобеспечения экипажа.

В-третьих, в последние десятилетия объединяются теоретические и технологические разработки в области фотоэлектрического и фототермического преобразования лучистой энергии.

Преобразования лучистой энергии различны. В фотоэнергетике растений — это поглощение и консервация энергии фотонов не только в хлоропластах, как это представлялось в рамках классической теории фотосинтеза, но и в биомембранах. В гелиоэнергетике — высокотемпературный нагрев рабочей среды или получение электроэнергии на глубоких внутриатомных и межатомных уровнях полупроводниковых элементов.

Пока что фантастическим, но теоретически возможным способом преобразования энергии является и аннигиляция частиц с полным освобождением заключенной в них энергии субквантов. Если существует в природе фоторождение частиц, то почему бы не существовать и обратному процессу, свойственному явлениям природы?

Косвенно о такой возможности свидетельствует невообразимо сильное излучение галактик Мессье 87 и Лебедь А, где поток энергии исчисляется величинами в 10>44 эрг в секунду, что объяснимо пока только теоретически возможным механизмом аннигиляции, не противопоказанной космическим объектам.

Делокализация субквантов частиц при их аннигиляции дает 90 процентов заключенной в них энергии массы покоя. Оставшиеся — у нейтрино.

Субквантовая энергетика отнюдь не стоит перед гамлетовской дилеммой: быть ей или не быть? Она уже есть. Вопрос в другом: как производительно использовать энергию мириадов космических фотонов, щедро дарованных нам природой.

ОСНОВА АТОМИСТИКИ

Двадцать пять веков назад Фалес Милетский задал вопрос: из чего создан наш мир? Похоже, что нынешняя атомистическая теория отвечает на него так: из всего. Из частиц, полей, физического вакуума — из всего. Но это не очень хорошо разъясняет, из чего созданы, например, частицы? А свет?

Атомистика — это учение о прерывистом, «зернистом», по Демокриту, дискретном строении материи. Ее исходным понятием послужила идея атома — неделимого создания природы. Однако по мере экспериментального доказательства различия форм материи — в виде уже делимого атома, молекул, частиц, полей и физического вакуума — атомистика отошла от своего изначального смысла. Постепенно она превратилась в учение обо всех зернистых и незернистых формах и видах материи. Современная атомистика считает материю прерывной и непрерывной, она отрицает существование конечных «кирпичиков» мироздания, действительно неделимых, первичных его элементов.

Но если даже реальность дискретных и непрерывных форм материи доказана опытом, это еще не доказывает невозможность существования исходных элементов ее структур. Отрицание первичных элементов есть использование недоказательства их реальности как доказательства их нереальности.

В «Диалектике природы» Энгельс заметил, что если все различия и изменения качества сводятся к количественным различиям и изменениям, то мы с необходимостью приходим к тезису, что вся материя состоит из тождественных мельчайших частиц. Но до этого мы еще не дошли. До этого еще не дошла и физика высоких энергий, имеющая дело с наиболее глубоко скрытыми деталями строения вещества и в этом смысле логически развивающая гипотезы античных философов.

Взаимопревращения частиц заставляют предполагать наличие некоего общего элемента, служащего для них как бы строительным материалом. Фоторождение частиц и их превращение в свет убеждает в возможности существования единой для них детали, инвариантной относительно форм, видов и состояний частиц вещества и излучений. Эта общая для них деталь в частицах перекрывается их характеристиками. Остается искать ее в свете, в фотонах.

Ньютон считал, что изучение света — ключ к познанию тайн материи. Действительно, изучение света не раз приводило к фундаментальным результатам. Один из них — создание квантовой теории. Но и в ней, как известно, еще нет ответов на вопросы о физической сущности квантов света и постоянной Планка. А Лобачевский сетовал, что трудность понятий увеличивается по мере их приближения к начальным истинам в природе. Это относится и к атому энергии излучений — субкванту.

Свет, фотоны показывают: да, в природе существует исходный, начальный элемент материальных структур, инвариантный относительно вещества и излучения. Он неделим, имеет точное численное значение величины энергии, размер, участвует в создании всех частиц вещества и вновь обретает свой первоначальный вид при их распаде и аннигиляции. В частицах он может группироваться в своего рода фракции, которые определяются в качестве кварков, партонов и им подобных образований.

Идея субкванта, вероятно, отвечает на вопрос Фалеса из Милета: мир наш, вещество и свет, образован из субквантов. Они обладают всеми качествами и параметрами, необходимыми для того, чтобы признать их непреходящей основой современной атомистики.


Рекомендуем почитать
Покоренный электрон

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.