Этюды о свете - [7]

Шрифт
Интервал

Кто создал все, тот сотворил и части,
И после выбрал лучшую из них,
Чтоб здесь явить нам чудо дел своих,
Достойное его высокой власти.

Если во Вселенной рождаются и умирают, превращаясь в фотоны и субкванты, мириады атомов вещества, если на каждый атом приходится более сотни миллионов фотонов, если по ее просторам бродят толпы субквантов, выбитых из фотонов и частиц, то едва ли будет преувеличением сказать, что окружающий нас мир — это мир субквантов.

И вполне естественно предположить, что этот мир существенным образом влияет на все. И что это влияние можно заметить и с пользой применить в теории и на практике.

Так, например, неисчислимые толпы субквантов и все самостоятельные «бродяги» наряду с нейтрино образуют собой и скрытую массу Вселенной, и так называемую энергию нулевых колебаний вакуума. Их трудно объяснить иначе, а присущие им бесконечности сводят на нет достоинства теории квантованных полей. Этот энергетический «бульон», видимо, питает и набирающих, по Вавилову, полный квант энергии спонтанных излучателей фотонов.

ЕЩЕ ОДНА ПОЛЬЗА СВЕТА

Каждое «ведро пространства», согласно Фреду Хойлу, пронизывают миллиарды квантов космических излучений: Только самое слабое из них, реликтовое, содержит около 400 фотонов в кубическом сантиметре. Космос непрерывно и со всех сторон шлет даровую, вечную, чистую и безопасную энергию. Можно ли ее использовать — вот в чем вопрос.

О лучистой энергетике обычно говорят: этого не может быть. Но точно также говорили и об использовании пара, электричества и атома. Сам Резерфорд, открывший атомное ядро, решительно отвергал возможность получения атомной энергии.

Разумеется, у отдельного фотона энергии мало. Но ее мало и у отдельного атома. Однако на каждый атом вещества приходится больше ста миллионов фотонов. А тех, что летят к нам из Космоса ежесекундно, не счесть. При этом фотоны обладают способностью наращивать воздействие на приемные устройства при увеличении их памяти о субквантах. Тогда рассеянные и вроде бы не сильные лучи далеких звезд могут обретать мощь жаркого и обильного солнечного света на экваторе в полдень при безоблачном небе. Природа показывает нам пример рационального использования лучистой энергии в растительном и животном мире. Теоретическое обоснование возможности лучистой энергетики было неоднократно опубликовано с 1992 года у нас и в 1995 году — в США[3].

Норберт Винер говорил, что каждая профессия имеет свои особенности. Когда горит дом, люди бегут от огня, а пожарный бежит в огонь, в горящий дом. Если он бежит от огня, то теряет честь и звание пожарного. А как быть с честью и званием ученого, если он избегает решения проблем? Если он перестал быть исследователем? Ландау как-то справедливо заметил: ученым может быть и кот, но он — не исследователь.

Фотоны при определенном сочетании частоты их излучения и времени памяти приемников проявляют себя подобно частицам вещества, бомбардирующим приемник. А это значит, что субкванты света обладают кинетической энергией. Но она может не только бомбардировать приемник, но и нагревать его, а также трансформироваться в другие виды энергии электрическую, химическую и механическую, связанную с движением приемника. Ведь энергия воздействия фотонов аддитивна, она суммирует энергию субквантов. Каждый из них имеет в соответствии с величиной постоянной Планка 6,6261·10>−27 эрг=4,1355·10>−15 электронвольт=4,4398·10>−24 атомной единицы массы.

Память цинка, например, с учетом его красной границы фотоэффекта имеет величину 1,2·10>−14 секунды. При частоте света больше 4,5·10>14 герц цинк получает плотную «очередь» субквантов, сравнимую с ударом частицы вещества. Но при меньшей памяти приемника удара фотона такой же частоты уже не будет. И наоборот: при низкой частоте света, но при увеличенном времени памяти приемного устройства можно получать нужный уровень воздействия — удар, нагрев, трансформацию вида энергии.

В этом — вся соль.

Если поучиться у природы и привлечь теорию, то собранные уловителями лучистой энергии кванты далеких звезд и других излучателей могут стать очень и очень полезными.

Использовать лучистую энергию Космоса в конце XIX века призывал еще первый русский физик-теоретик, профессор Московского университета Николай Умов. А постановка задачи, как известно, — первый шаг к ее решению. Но только недавно немецкие исследователи создали материал, который вместо стекла в окне не только пропускает свет, но и обогревает помещение. Изобретатель компьютерной дискеты Иосиро Накамацу объявил в 2001 году об использовании энергии космических излучений. Главный ученый секретарь Российской академии наук Николай Платэ сообщил в конце того же года в газете «Труд» о создании новых материалов, обладающих памятью и эффективно преобразующих виды энергии.

Недавно в Кремле на заседании Всемирного информационного форума было сказано: «Не нужно больше никакого топлива. Найден новый универсальный источник энергии — свет». «Общая газета» иронизировала в своем сообщении по поводу этого заявления, но уподобилась тем самым герою рассказа А. П. Чехова «Письмо к ученому соседу».


Рекомендуем почитать
Покоренный электрон

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.