Этюды о свете - [10]

Шрифт
Интервал

В 1920 году Эйнштейн говорил: «Согласно общей теории относительности, пространство немыслимо без эфира». Классики релятивизма — Лармор, Лоренц, Пуанкаре и Минковский — также не требовали отказа от эфира. Дирак предложил вернуться к эфиру в смысле введения в картину мира нового представления такой среды, которое соответствовало бы идеям квантовой теории. Восстановить эфир в качестве тончайшей материальной среды предложил и Юкава. В последние годы опубликованы десятки работ, доказывающих неправомерность, необоснованность отказа от эфира. И возвращение к нему вовсе не связано с пересмотром теории относительности Эйнштейна, как это полагают некоторые ученые.

«Как и во времена Ньютона, — писал Вавилов, — мы так же мало знаем, «что такое эфир», а пожалуй даже еще меньше, чем тогда». Примечательно, что еще Ломоносов и Эйлер считали распространение света в пространстве доказательством существования эфира. И хотя мы не знаем, ни что такое эфир, ни что такое гравитация, пространство насыщено проносящимися в нем фотонами, а яблоки продолжают падать с деревьев. Это факты, и они утверждают: пространство распространяет свет столь же реально, как реально и тяготение.

Эстафета субквантов, их передача участками тончайшей материальной среды, заполняющей пространство, по вектору излучения условно характеризуется как трансляция и ретрансляция. Это предположение исходит из фактов отсутствия у субквантов какой-либо внутренней причины их движения и наличия их движения в среде.

Чтобы переносить энергию субквантов, эфир должен и сам обладать энергией. Он ею обладает. Поэтому и не происходит диссипация света. А чтобы ретранслировать субкванты, он вовсе не должен быть упругой средой с приводимым в приложении коэффициентом. Эфир и не является такой средой. Мизерная плотность и вязкость эфира объясняет исчезающе малое его влияние на движение планет. Как сплошная среда, не имеющая репера, эфир никак не может служить системой отсчета. А опыт Майкельсона, при котором Земля вместе с интерферометром сдвигалась за время генерации каждого субкванта порядка 10>−21 секунды на расстояние всего лишь 3·10>−27 сантиметра, никак не мог доказать отсутствие эфира. Ни один прибор не может пока фиксировать такое ничтожно малое смещение в пространстве.

Аргументом в пользу реальности эфира как переносчика света является формула Коши, которая хорошо передает нормальный ход дисперсии. В 1829–1835 годах он развил представление Френеля о зависимости скорости света от свойств эфира, изменяемых молекулами вещества. Ландсберг отметил очень большое историческое значение теории Коши, подтвержденной опытом. На такой же основе взаимодействия свойств эфира и вещества при переносе в нем света Зельмейер в 1871 году разработал теорию аномальной дисперсии, основы которой сохранились и в современных теориях. В этих представлениях, по-видимому, и содержится вся сущность явления дисперсии света.

Если эфир — в веществе или вне его — ретранслирует субкванты света с определенной только для данной среды скоростью, то допущение Эйнштейна в 1905 году о независимости скорости света от движения излучающего тела совершенно справедливо. Но по существу, однако, это означало его согласие с представлениями Максвелла и Лоренца о распространении света в эфире.

После генерации и отрыва от источника субкванты мгновенно приобретают скорость их переноса в данной среде и уже ничем не связаны с излучателем. Поэтому скорость света нисколько не зависит от скорости движения источника, всегда меньшей световой. За время испускания субкванта порядка 10>−21 секунды любой источник проходит ничтожно малый и незаметный для субкванта путь. Попытки присовокупить к скорости света скорость движения источника подобны желанию увеличить скорость передачи письма адресату посредством подбегания к почтовому ящику. С какой бы скоростью ни опускать в него письмо, оно ни на секунду раньше не попадет в почтовый ящик получателя, чем это обусловлено работой почты — среды переноса писем.

Но сегодня ни одно определение физической сущности пространства не принято в качестве единственно достоверного. Все они сосуществуют в разных теориях разных авторов. Согласно Вихману, «мы говорим о вакууме, демонстрируя тем самым отсутствие интереса к среде, в которой происходит распространение волн. Мы ограничиваемся тем, что имеем волновое уравнение для этих волн».

У эвенков почти 50 слов обозначают снег. Полусотней слов называют рыбий хвост в Исландии. Слов много, а суть — одна. Физики же сегодня разными словами именуют и разную суть пространства. Тут и различные вакуумы, и разные оттенки эфира. Отсутствие интереса к среде, в которой происходит распространение волн, по Вихману, пользы не дает.

Так почему бы не восстановить понятие эфира как тончайшей материальной среды по определению? Один термин — один смысл. А вакуумы как были разными, так пусть ими и остаются.

СКОРОСТИ СВЕТА

Известно, что скорость света в разных средах и разных условиях различна. В воздухе — примерно 300 тысяч километров в секунду, в воде — 225, в стекле — 200. Выходя из стекла в воздух, например, свет сразу же обретает «воздушную» скорость — 300 тысяч км/с. Почему? И почему он сразу же замедляется на 100 тысяч километров в секунду, если вернется в стекло? Ведь нынешняя теория света утверждает постоянство его скорости во всех средах и при всех условиях.


Рекомендуем почитать
Покоренный электрон

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.