Этот правый, левый мир - [81]
Никто не знает, почему изменение заряда на обратный должно сопровождаться заменой правого на левое и наоборот. Картина асимметричного пространства вызывает серьезные возражения. Точно так же трудно объяснить знак электрического заряда правой или левой ориентацией некой стабильной асимметричной структуры. Мысль о том, что зеркальное отображение материи (в смысле обычной право-левой инверсии пространства) каким-то образом влечет за собой обращение знака зарядов, пока является лишь благой надеждой.
Ян в своей великолепной брошюре «Элементарные частицы»[62] напоминает нам, как был поражен Мах, когда он впервые обнаружил асимметричное поведение магнитной стрелки в поле, окружающем проводник с током. Ян отмечает, что когда строение материи было лучше понято, то все стало на свое место и симметрия была восстановлена в правах. И в наши дни физики верят в то, что загадка винтовой ориентации, так же как и тайна электрического заряда, будет понята на еще более глубоком уровне проникновения в структуру вещества. В своей речи в 1957 году Теллер заявил: «Строение вещества обладает многими сложными взаимосвязями, однако окончательная структура после многих промежуточных этапов совершенно неожиданным образом окажется чрезвычайно простой».
Возможно. И если бы сейчас мы смогли уловить мимолетный отблеск окончательного решения, оно наверняка показалось бы нам совершенным бредом. Фримен Дайсон в уже цитировавшейся в гл. 22 статье «Новаторство в физике» вспоминает, как в 1958 году немецкий физик Вернер Гейзенберг и Паули предложили необычную теорию частиц, которая могла объяснить несохранение четности в слабых взаимодействиях. В Нью-Йорке Паули читал лекцию по этому вопросу группе ученых, среди которых был и Нильс Бор. В последовавшей за докладом дискуссии молодые физики остро критиковали теорию Паули. Поднялся Бор. «Все мы согласны, — сказал он, — что ваша теория безумна. Вопрос, который нас разделяет, состоит в том, достаточно ли она безумна, чтобы иметь шансы быть истинной. По-моему, она недостаточно безумна для этого».
Дайсон в своей статье поясняет: «То же самое возражение — недостаточная безумность — применимо и ко всем другим делавшимся до сих пор попыткам создать радикально новую теорию элементарных частиц. Это особенно относится к ниспровергателям основ. Большая часть ниспровергающих основы статей, которые направляются в „Physical Review“, отклоняется редакцией не потому, что их нельзя понять, а именно потому, что их можно понять. Те, которые понять нельзя, как правило, печатаются. Великое открытие, когда оно только что появляется, почти наверняка возникает в запутанной, неполной и бессвязной форме. Самому открывателю оно понятно только наполовину. Для всех остальных оно — полная тайна. Поэтому любое построение, которое не кажется на первый взгляд безумным, не может иметь надежды на успех».
К мудрым словам Дайсона я хотел бы добавить (хотя и не отношу себя к числу ученых): когда такая «безумная» теория разработана настолько, что представляется уже вовсе не безумной, а простой и почти неизбежной, и кажущееся нагромождение частиц уступает место прекрасному порядку, сам успех теории открывает нам двери, ведущие к еще большим потрясениям.
Я не отношусь к числу тех, кто верит, что когда-нибудь наука откроет все. Такая точка зрения кажется мне выражением простоватой самонадеянности, и мне трудно найти общий язык с ее приверженцами. Прибегнув к известной метафоре Уильяма Джеймса, мы можем сказать, что существуют вещи, поистине недоступные нашему сознанию, подобно тому как квантовая механика непостижима уму собаки.
«Человек мал, — замечает король Карнос в пьесе лорда Дансени „Смех богов“, — а ночь длинна и полна чудес».
Я. А. Смородинский
О новой истории «Проблемы Озма»
Итак, можно ли все-таки объяснить обитателю другой галактики, с какой стороны находится у нас сердце? Можно ли это сделать, если между двумя мирами есть только радиосвязь?
Гарднер кончает свой рассказ на том, что указать правое и левое направления можно с помощью опыта By. Рецепт, который мы сообщим собеседнику, таков:
1. Возьмите соленоид с током.
2. Поместите в него радиоактивный кобальт-60.
3. Сосчитайте, сколько электронов летит из каждого конца соленоида.
4. Отметьте, в какую сторону вылетает меньше электронов.
Теперь предложим собеседнику взять винт и ввинчивать его в направлении, в котором вылетает меньше электронов. Если он будет вращать отвертку в направлении тока, такой винт надо называть правым; если против направления тока, такой винт надо называть левым. Разобравшись в винтах, удастся уже договориться, какая рука называется правой. Возможность опыта By связана с тем, что в природе есть нейтрино И антинейтрино. Нейтрино летит в пространстве, как волчок или как снаряд, «ввинчиваясь», подобно левому винту. Антинейтрино, наоборот, «ввинчивается», как винт правый. Так что вместо описания опыта By можно было бы просто послать нашему далекому другу нейтрино и попросить его самого сравнить нейтрино со своими винтами, руками и чем он еще захочет. В противоположность каналу радиосвязи нейтрино-антинейтринный канал пропускает информацию о правом и левом. Что бы ни случилось но дороге с нейтрино, рассеялся ли он, столкнувшись с каким-либо атомом (это хотя и очень маловероятно, но все же возможно), или нет, его винт, или, как говорят, его спиральность, не изменится: нейтрино всегда левое!
Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.
Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.
Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.
Александр Дементьев – журналист (работал в таких изданиях, как РБК, «Ведомости», Лента.ру), закончил МПГУ (бывш. МГПИ им. Ленина) по специальности общая и экспериментальная физика. Автор самого крупного научно-популярного канала «Популярная наука» на «Яндекс. Дзен». Перед вами – уникальная книга, которая даст возможность по-новому взглянуть на космос. Человечество стоит на пороге больших открытий за пределами нашей планеты. И они кардинально изменят жизнь людей! Из книги вы узнаете: • Что ждет Землю и Солнце в будущем.
Квантовая физика – очень странная штука. Она утверждает, что одна частица может находиться в двух местах одновременно. Больше того, частица – это еще и волна, и все происходящее в квантовом мире может быть представлено как взаимодействие волн – или частиц, как вам больше нравится. Все это было понятно уже к концу 1920-х годов. За это время было испробовано немало разных более или менее убедительных интерпретаций. Известный популяризатор науки Джон Гриббин отправляет нас в захватывающее путешествие по «большой шестерке» таких объяснений, от копенгагенской интерпретации до идеи множественности миров. Все эти варианты в разной степени безумны, но в квантовом мире безумность не равносильна ошибочности, и быть безумнее других не обязательно значит быть более неверным.
Как падающим кошкам всегда удается приземлиться на четыре лапы? Удивительно, сколько времени потребовалось ученым, чтобы ответить на этот вопрос! История изучения этой кошачьей способности почти ровесница самой физики — первая исследовательская работа на тему падающей кошки была опубликована в 1700 г. французом Антуаном Параном, но даже сегодня ученые продолжают находить в ней спорные моменты. В своей увлекательной и остроумной книге физик и заядлый кошатник Грегори Гбур показывает, как попытки понять механику падения кошек помогли разобраться в самых разных задачах в математике, физике, физиологии, неврологии и космической биологии, способствовали развитию фотографии и кинематографа и оказали влияние даже на робототехнику. Поиск ответа на загадку падающей кошки погружает читателей в увлекательный мир науки, из которого они узнают решение головоломки, но также обнаружат, что феномен кошачьего выверта по-прежнему вызывает горячие споры ученых. Автор убежден, что чем больше мы исследуем поведение этих животных, тем больше сюрпризов они нам преподносят.
Что случилось с Венерой? Как Сатурн стал властелином колец? Где искать Девятую планету? Почему мы не видим облако Оорта? Что мы знаем о самой большой звезде? Как живут звезды после смерти? Как галактики воруют друг у друга? Как сфотографировать черную дыру? Какая галактика самая большая? Эта книга отправит вас в космическое путешествием вместе с экспертами журнала New Scientist. Стартуя от Солнца, мы посетим планеты земной группы, газовые гиганты и их спутники, пересечем облако Оорта и выйдем за границы Млечного Пути.
Автор книги рассказывает о своем жизненном пути — от рабочего до ученого, доктора физико-математических наук, о важнейших событиях минувших десятилетий, об участии в них замечательных советских ученых. Он вспоминает об интересных встречах и дружбе с выдающимися деятелями физической науки, внесших большой вклад в ее дальнейшее развитие.
В книге известного популяризатора науки А. Азимова в живой и популярной форме изложены современные представления о самой неуловимой частице микромира — нейтрино. Азимов прослеживает цепь событий, приведших физиков к открытию нейтрино, рассказывает о том, как эту частицу научились регистрировать, о ее роли в эволюции Вселенной, о последних достижениях нейтринной физики — двухнейтринном эксперименте. Автор стремится раскрыть перед читателем современную физическую картину мира, но в то же время не подавить его массой сведений, столь обширных в этой области науки.Книгой заинтересуются самые широкие круги читателей: школьники, преподаватели и те, кто следит за новейшими достижениями физики.