Этот правый, левый мир - [5]

Шрифт
Интервал

ее оси симметрии. Вам удастся это сделать для всех букв, кроме «О». Если рисовать «О» в виде эллипса, осей будет всего две, но мы нарисовали ее кружком — в этом случае число осей симметрии бесконечно.

Теперь поднесите к зеркалу листок с асимметричными буквами. Если они выбраны правильно, то, как бы вы ни вертели листок, ни одна из этих букв не будет выглядеть в зеркале «как настоящая». Все отражения асимметричных букв «получаются не такими». Рассмотрите эти буквы, и вы убедитесь, что для них невозможно провести оси симметрии. То, что свойства симметрии меняются от буквы к букве, дает возможность проделать ряд забавных фокусов с отражением слов в зеркале, но прежде чем рассказать о них (это будет сделано в гл. 4), мы должны посвятить следующую главу рассмотрению симметрии и асимметрии фигур в 3-пространстве, в том трехмерном мире, где живем мы сами.

Глава 3. Трехмерный мир

В 3-пространстве, так же как в 1-пространстве и 2-пространстве, все фигуры можно разбить на две группы: симметричные и асимметричные. Симметричные пространственные фигуры можно наложить точка за точкой на их зеркальные изображения. С асимметричными пространственными фигурами этого сделать нельзя. Симметричные фигуры в 1-пространстве, если вы помните, имеют точку (центр) симметрии; симметричные фигуры в 2-пространстве имеют ось симметрии — линию. Как и следовало ожидать, симметричные фигуры в 3-пространстве имеют так называемую плоскость симметрии.

Поясним это утверждение несколькими примерами. Сфера — пространственная фигура, которая, очевидно, полностью сходна со своим зеркальным изображением. Как круг можно рассечь бесчисленным множеством прямых линий, каждая из которых делит его на две зеркальные половинки, так и через центр сферы можно провести бесконечное число плоскостей. Если представлять себе плоскость симметрии как зеркало, то полусфера вместе со своим отражением в зеркале образует фигуру, совпадающую с исходной сферой. Представьте себе разрезанный пополам шарик для настольного тенниса. Если одну из половинок прижать к зеркалу линией разреза, то эта половинка вместе с отражением будет выглядеть как целый шарик. Сфера — не единственная трехмерная фигура, обладающая бесконечным числом плоскостей симметрии. Цилиндрическая сигарета, например, имеет бесконечное множество таких плоскостей, проходящих через ось сигареты плюс еще одна плоскость, которая проходит через центр сигареты и перпендикулярна ее оси. У конусообразного стаканчика с мороженым через ось тоже можно провести бесчисленное множество плоскостей симметрии, но плоскости симметрии, перпендикулярной оси конуса, нет. Чтобы быть симметричным, трехмерный объект должен иметь по крайней мере одну плоскость симметрии, хотя таких плоскостей он может иметь сколько угодно. У пирамиды Хеопса четыре плоскости симметрии. У кирпича — три. У стола с прямоугольной крышкой — две, а у стула или кофейной чашки только по одной. Если распилить чашку на две половинки вдоль плоскости симметрии и любую из полученных половинок прижать к зеркалу, «получится» целая чашка — в этом и заключается, конечно, смысл понятия «плоскость симметрии». Плоскость симметрии чашки наталкивает на каверзный вопрос: где у чашки ручка — слева или справа?

Рис. 10. Плоскости симметрии.

На рис. 10 изображены шесть трехмерных тел. У всех, кроме куба, проведены плоскости симметрии. Изучите изображение куба внимательно и попытайтесь ответить на такой вопрос:

Упражнение 2. Сколько плоскостей симметрии у куба?

Для совмещения симметричного трехмерного предмета со своим зеркальным изображением может потребоваться поворот в 3-пространстве. Предположим, вы подносите к зеркалу конический стаканчик с мороженым. Если держать его, как показано на рис. 11 слева, чтобы плоскость зеркала была параллельна одной из плоскостей симметрии конуса, то можно совместить предмет с изображением, просто сдвинув их вместе. Но если конус направлен вершиной в сторону зеркала (правая часть рис. 11), то в этом случае, как говорят, предмет и отражение будут иметь разную ориентацию в 3-пространстве. Для того чтобы совместить эти две фигуры, одну из них необходимо повернуть так, чтобы оба конуса были сориентированы одинаково. В данном случае сферу вращать никогда не придется, потому что плоскость зеркала всегда будет параллельна одной из бесчисленного множества плоскостей симметрии сферы.

Рис. 11. Конусы можно наложить на зеркальное изображение независимо от ориентации.

У асимметричных пространственных объектов нет ни одной плоскости симметрии; их никогда нельзя совместить с отражением в зеркале независимо от ориентации — это, например, всем известные спиральная пружина и винтовая лестница. Точно так же, как спираль является асимметричной фигурой в плоскости, пружина — трехмерная спираль — асимметрична в 3-пространстве. Как ни пытайтесь, вам не удастся плоскостью рассечь пружину на две зеркально симметричные половинки. Поднесите пружину к зеркалу. Как бы вы ее ни поворачивали, в зеркале она всегда «получается не такой».

Каждая асимметричная фигура имеет зеркального двойника, который во всех деталях совпадает с ней — только «получается не такой». Две асимметричные фигуры, являющиеся зеркальным изображением одна другой, называются


Еще от автора Мартин Гарднер
Математические головоломки и развлечения

Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.


Есть идея!

Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.


Математические чудеса и тайны

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Остров пяти красок

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Теория относительности для миллионов

Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.


Когда ты была рыбкой, головастиком - я...

      Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.


Рекомендуем почитать
Покоренный электрон

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.