Этот правый, левый мир - [5]

Шрифт
Интервал

ее оси симметрии. Вам удастся это сделать для всех букв, кроме «О». Если рисовать «О» в виде эллипса, осей будет всего две, но мы нарисовали ее кружком — в этом случае число осей симметрии бесконечно.

Теперь поднесите к зеркалу листок с асимметричными буквами. Если они выбраны правильно, то, как бы вы ни вертели листок, ни одна из этих букв не будет выглядеть в зеркале «как настоящая». Все отражения асимметричных букв «получаются не такими». Рассмотрите эти буквы, и вы убедитесь, что для них невозможно провести оси симметрии. То, что свойства симметрии меняются от буквы к букве, дает возможность проделать ряд забавных фокусов с отражением слов в зеркале, но прежде чем рассказать о них (это будет сделано в гл. 4), мы должны посвятить следующую главу рассмотрению симметрии и асимметрии фигур в 3-пространстве, в том трехмерном мире, где живем мы сами.

Глава 3. Трехмерный мир

В 3-пространстве, так же как в 1-пространстве и 2-пространстве, все фигуры можно разбить на две группы: симметричные и асимметричные. Симметричные пространственные фигуры можно наложить точка за точкой на их зеркальные изображения. С асимметричными пространственными фигурами этого сделать нельзя. Симметричные фигуры в 1-пространстве, если вы помните, имеют точку (центр) симметрии; симметричные фигуры в 2-пространстве имеют ось симметрии — линию. Как и следовало ожидать, симметричные фигуры в 3-пространстве имеют так называемую плоскость симметрии.

Поясним это утверждение несколькими примерами. Сфера — пространственная фигура, которая, очевидно, полностью сходна со своим зеркальным изображением. Как круг можно рассечь бесчисленным множеством прямых линий, каждая из которых делит его на две зеркальные половинки, так и через центр сферы можно провести бесконечное число плоскостей. Если представлять себе плоскость симметрии как зеркало, то полусфера вместе со своим отражением в зеркале образует фигуру, совпадающую с исходной сферой. Представьте себе разрезанный пополам шарик для настольного тенниса. Если одну из половинок прижать к зеркалу линией разреза, то эта половинка вместе с отражением будет выглядеть как целый шарик. Сфера — не единственная трехмерная фигура, обладающая бесконечным числом плоскостей симметрии. Цилиндрическая сигарета, например, имеет бесконечное множество таких плоскостей, проходящих через ось сигареты плюс еще одна плоскость, которая проходит через центр сигареты и перпендикулярна ее оси. У конусообразного стаканчика с мороженым через ось тоже можно провести бесчисленное множество плоскостей симметрии, но плоскости симметрии, перпендикулярной оси конуса, нет. Чтобы быть симметричным, трехмерный объект должен иметь по крайней мере одну плоскость симметрии, хотя таких плоскостей он может иметь сколько угодно. У пирамиды Хеопса четыре плоскости симметрии. У кирпича — три. У стола с прямоугольной крышкой — две, а у стула или кофейной чашки только по одной. Если распилить чашку на две половинки вдоль плоскости симметрии и любую из полученных половинок прижать к зеркалу, «получится» целая чашка — в этом и заключается, конечно, смысл понятия «плоскость симметрии». Плоскость симметрии чашки наталкивает на каверзный вопрос: где у чашки ручка — слева или справа?

Рис. 10. Плоскости симметрии.

На рис. 10 изображены шесть трехмерных тел. У всех, кроме куба, проведены плоскости симметрии. Изучите изображение куба внимательно и попытайтесь ответить на такой вопрос:

Упражнение 2. Сколько плоскостей симметрии у куба?

Для совмещения симметричного трехмерного предмета со своим зеркальным изображением может потребоваться поворот в 3-пространстве. Предположим, вы подносите к зеркалу конический стаканчик с мороженым. Если держать его, как показано на рис. 11 слева, чтобы плоскость зеркала была параллельна одной из плоскостей симметрии конуса, то можно совместить предмет с изображением, просто сдвинув их вместе. Но если конус направлен вершиной в сторону зеркала (правая часть рис. 11), то в этом случае, как говорят, предмет и отражение будут иметь разную ориентацию в 3-пространстве. Для того чтобы совместить эти две фигуры, одну из них необходимо повернуть так, чтобы оба конуса были сориентированы одинаково. В данном случае сферу вращать никогда не придется, потому что плоскость зеркала всегда будет параллельна одной из бесчисленного множества плоскостей симметрии сферы.

Рис. 11. Конусы можно наложить на зеркальное изображение независимо от ориентации.

У асимметричных пространственных объектов нет ни одной плоскости симметрии; их никогда нельзя совместить с отражением в зеркале независимо от ориентации — это, например, всем известные спиральная пружина и винтовая лестница. Точно так же, как спираль является асимметричной фигурой в плоскости, пружина — трехмерная спираль — асимметрична в 3-пространстве. Как ни пытайтесь, вам не удастся плоскостью рассечь пружину на две зеркально симметричные половинки. Поднесите пружину к зеркалу. Как бы вы ее ни поворачивали, в зеркале она всегда «получается не такой».

Каждая асимметричная фигура имеет зеркального двойника, который во всех деталях совпадает с ней — только «получается не такой». Две асимметричные фигуры, являющиеся зеркальным изображением одна другой, называются


Еще от автора Мартин Гарднер
Математические головоломки и развлечения

Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.


Есть идея!

Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.


Математические чудеса и тайны

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Теория относительности для миллионов

Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.


Когда ты была рыбкой, головастиком - я...

      Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.


Остров пяти красок

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Движение молекул

В этой книжке рассказывается о главном, неотъемлемом свойстве невидимых частиц вещества — об их движении и о связанных с этим свойствах тел.


Физика повседневности. От мыльных пузырей до квантовых технологий

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни.


Физика в бою

В книге коллектива авторов в живой, популярной форме рассказывается о том, какую важную роль играет физика в современном военном деле, как используются ее достижения для дальнейшего развития ракетно-ядерного оружия, повышения боевых возможностей сухопутных войск, авиации и военно-морского флота Авторы показывают, что без знания основ физики сейчас невозможно плодотворно изучать и квалифицированно использовать боевую технику и вооружение, видеть, в каком направлении идет их прогресс. Встречаясь с известными еще со школьной скамьи физическими законами, читатель узнает, каких интересных и зачастую необычных результатов добиваются ученые и инженеры, используя эти законы для решения сложных проблем современного боя Читатель познакомится с новейшими военно-техническими достижениями, родившимися на основе использования успехов физики, ее тесного контакта с техническими науками.Редактор-составитель инженер-подполковник Жуков В.Н.


Вторжение в физику 20-го века

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Бегство от удивлений

Книга рассказывает о рождении и развитии механики как науки, искавшей и ищущей ответы на самые простые и глубокие вопросы об устройстве природы.


Бег за бесконечностью

В книге рассказывается о современных представлениях об одной из самых быстроразвивающихся фундаментальных наук — физике элементарных частиц. Основное внимание уделено описанию сильновзаимодействующих частиц — адронов их поведению в различных реакциях при высоких энергиях.