Эта странная математика. На краю бесконечности и за ним - [61]

Шрифт
Интервал

В такой вот диковинный мир мы попадаем, если принимаем реальность существования множеств чисел с бесконечным количеством элементов. Именно этот решающий вопрос стоял перед математиками в конце XIX века: готовы ли они принять существование актуальной бесконечности как числа? Большинство продолжало придерживаться точки зрения Аристотеля и Гаусса и отрицало такую возможность. Но некоторые, в том числе немецкий математик Рихард Дедекинд, а более всех его соотечественник Георг Кантор, понимали, что пришло время подвести под понятие бесконечных множеств прочную логическую базу.

Став первопроходцем в странном и тревожном мире бесконечного, Кантор столкнулся с ожесточенным сопротивлением и глумлением со стороны многих из своих современников (что прискорбнее всего, среди них оказался и его наставник и учитель Леопольд Кронекер), потерял работу в Берлинском университете и нажил себе душевную болезнь. В зрелом и пожилом возрасте он периодически оказывался в психиатрических лечебницах, терзался вопросом об авторстве пьес Шекспира и предавался раздумьям о философском и даже религиозном значении своих математических идей. Но несмотря на то, что умер он, оставленный всеми, в 1918 году в психиатрической лечебнице в стране, все еще находящейся в состоянии войны, сегодня его помнят за фундаментальный вклад в развитие теории множеств и в наше осмысление бесконечного.

Кантор понял, что хорошо известный принцип попарного разбиения, который используют для того, чтобы определить, равны ли два множества, можно с таким же успехом применить и к бесконечным множествам. Из него следовало, что четных положительных целых чисел на самом деле столько же, сколько положительных целых чисел всего. Кантор не только увидел, что никакого парадокса тут нет, – он осознал, что это определяющее свойство бесконечного множества: целое в нем не больше, чем какие-либо из частей. Далее он доказал, что множество всех натуральных, или положительных целых, чисел – 1, 2, 3, … (иногда в него включают и 0) – содержит точно такое же количество элементов, что и множество всех рациональных чисел, то есть тех, которые можно записать в виде обыкновенной дроби, где и числитель, и знаменатель целые. Он назвал это бесконечно большое число “алеф-ноль” (ﬡ>0), где “алеф” – это первая буква еврейского алфавита.

Вы можете решить, что есть только одно бесконечно большое число, ведь, раз оно и так бесконечно большое, как может что-то быть еще больше? Но будете неправы. Кантор доказал, что существуют разные виды бесконечности, из которых алеф-ноль – самая маленькая. Бесконечно больше алеф-нуля число алеф-один (имеющее, по выражению Кантора, бо́льшую “мощность”). Алеф-два, в свою очередь, бесконечно больше, чем алеф-один, и так далее, без конца. Насколько хватит нашего слабого воображения, алефы следуют друг за другом бесконечной вереницей. Но и это еще не все: оказывается, на каждый алеф приходится бесконечное количество других бесконечно больших чисел, и вот здесь нам придется разобраться с тем, насколько важно в царстве бесконечного различать количественные и порядковые числительные.

В повседневной речи и практической арифметике количественными числительными мы обозначаем количество объектов в каком-то наборе: один, пять, сорок два и так далее; а порядковыми, как подсказывает само название, – их порядок или положение в группе: первый, пятый, сорок второй и так дальше. Различие между этими двумя типами числительных кажется очевидным и не очень существенным. Допустим, речь идет о карандашах. Понятно, что невозможно иметь пятый карандаш, не имея в наборе как минимум пяти карандашей. Ясно и то, что если карандашей в наборе, скажем, семь, то пятый среди них все равно есть. Бывает, конечно, и так, что пять карандашей есть, а пятого нет, – если мы не расположили их в определенном порядке. Но если отвлечься от этих тонкостей, и для тех и для других числительных мы можем использовать одинаковые символы – 1 (или 1-й), 5 (или 5-й), 42 (или 42-й) и так далее, – не особенно вникая в то, чем отличаются друг от друга эти две категории. Кантор понял, что, когда дело касается бесконечно больших чисел, это различие становится крайне важным. Чтобы понять, что он имел в виду, давайте пробежимся по той области математики, в развитии которой Кантор и Дедекинд сыграли решающую роль, а именно по теории множеств.

Множество – это всего лишь набор объектов: хоть чисел, хоть любых других. На письме для обозначения множества используются фигурные скобки: например, {1, 4, 9, 25} или {стрела, лук, 75, R}. Размер множества, то есть количество содержащихся в нем элементов, называется его кардинальным[41] числом (или мощностью) и обозначается количественным числительным. В двух только что упомянутых множествах по четыре элемента, значит, у обоих кардинальное число равно четырем. Если два множества имеют одинаковое кардинальное число, то для каждого элемента одного множества можно найти пару во втором, причем ни один элемент не останется лишним; другими словами, между этими двумя множествами имеется взаимно однозначное соответствие. Например, чтобы показать, что два наших множества имеют одно и то же кардинальное число, мы можем элементу 1 из первого поставить в соответствие 75 из второго, элементу 4 – “стрелу”, элементу 9 – R, а элементу 25 – “лук”. Конечные кардинальные числа (то есть те, что определяют размер конечных множеств) – это обычные натуральные числа: 0, 1, 2, 3 и так далее. Первое бесконечное кардинальное число – это алеф-ноль, которым, как мы уже знаем, обозначается размер множества всех натуральных чисел.


Рекомендуем почитать
На траверзе — Дакар

Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.


Историческое образование, наука и историки сибирской периферии в годы сталинизма

Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.


Интеллигенция в поисках идентичности. Достоевский – Толстой

Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.


Князь Евгений Николаевич Трубецкой – философ, богослов, христианин

Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.


Лес. Как устроена лесная экосистема

Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.


Книга Бытия. Общая история происхождения

В “Книге Бытия” Гвидо Тонелли, известный итальянский физик, стоявший у истоков открытия знаменитого бозона Хиггса, описывает историю происхождения Вселенной и эволюцию жизни на Земле с точки зрения фундаментальной физики. Эта книга – одна из наиболее емких, внятных и убедительных попыток ответить на вечный вопрос человечества: “Что же на самом деле произошло в те первые мгновения?” Уместив 13,8 миллиарда лет в библейские “семь дней сотворения мира”, Тонелли увлекает читателя в стремительное путешествие по истории космоса – от Большого взрыва и рождения Вселенной до появления на Земле жизни, человеческого языка и способности человека видеть, понимать и описывать мир вокруг себя.


Невозможность второго рода. Невероятные поиски новой формы вещества

В этой книге увлекательно и доступно от первого лица рассказывается история потрясающего научного открытия. Физик-теоретик Пол Стейнхардт, профессор Принстонского университета, автор важных космологических теорий о ранней Вселенной, в чью честь Международная минералогическая ассоциация в 2014 году назвала новый минерал “стейнхардтитом”, описывает, как была найдена новая форма вещества – квазикристаллы, с конфигурацией атомов, запрещенной законами классической кристаллографии. Это захватывающая история о зарождении нового научного направления, о “невозможности”, которая оказалась возможной, о подлинной страсти и отчаянной храбрости в науке. В формате PDF A4 сохранен издательский макет.


Парадокс добродетели

Ричард Рэнгем, приматолог и антрополог, специалист в области эволюции приматов, профессор Гарвардского университета, подробно и доступно разбирает научную дискуссию по важнейшим вопросам: почему людям, представителям единого биологического вида, свойственны одновременно и удивительная доброта, и немыслимая жестокость; как эти качества, порой выходящие далеко за пределы здравого смысла, появились и закрепились в ходе эволюционной истории человечества; откуда у нас нравственные чувства, понятия о добре и зле; и главное – обречены ли мы своим эволюционным парадоксом на вечную угрозу насилия. В формате PDF A4 сохранен издательский макет книги.