Есть идея! - [7]
При этом вы сдвинете с места 100 стаканчиков. Предложенное профессором Квибблом шуточное решение позволяет вдвое уменьшить число стаканчиков, сдвигаемых с места.
Существует одна классическая головоломка, очень похожая на только что рассмотренную нами задачу, но несколько более трудную. Начнем с 2n предметов, выстроенных в ряд. Пусть по-прежнему n предметов, составляющих первую половину ряда, будут одного типа, а n предметов, составляющих вторую половину ряда, будут другого типа. (Как и прежде, их можно «моделировать» стаканчиками, фишками, игральными картами и т. п.) Требуется переместить предметы так, чтобы предметы одного типа чередовались с предметами другого типа, но в отличие от предыдущей задачи слову «переместить» придается строго определенное значение. На этот раз слово «переместить» означает, что любые два соседних предмета разрешается, не изменяя их последовательности, изъять из ряда и пристроить к любому свободному концу (после одного или нескольких ходов ряд может распасться на несколько звеньев).
Вот как это делается, например, при n = 3:
Как выглядит общее решение? При n = 1 решение тривиально. При n = 2 задача, как нетрудно выяснить, неразрешима. При всех n > 2 головоломка допускает решение не менее чем за n ходов.
Найти решение при n = 4 не так-то просто, и поиск его, несомненно, доставит вам немало удовольствия. Может быть, вам удастся сформулировать алгоритм решения головоломки за n ходов при любом n > 3.
Не меньший вызов любознательному читателю таят в себе многие необычные варианты той же головоломки. Приведем лишь некоторые из них.
1. Правила перемещения пар остаются теми же за одним исключением: если пара образована предметами различных типов, то перед тем, как пристроить ее к свободному концу, последовательность предметов в паре следует изменить. Например, перемещая две фишки, первая из которых (левая) красная, а вторая (правая) черная, их необходимо поменять местами, после чего первой станет черная, а второй красная фишка, и лишь после этого пристраивать к свободному концу. При 8 фишках существует решение в 5 ходов. При 10 фишках 5 ходов также оказывается достаточно. Общее решение неизвестно. Может быть, вам удастся найти его.
2. Правила такие же, как в исходной задаче, но фишек одного цвета на 1 меньше, чем другого, то есть фишек одного цвета n, а фишек другого n + 1. Доказано, что при любом n задачу можно решить за n² ходов, причем это число минимально.
3. Имеются фишки трех различных цветов. Пары соседних фишек перемещаются по обычному правилу с тем, чтобы фишки каждого цвета оказались выстроенными подряд. При n = 3 (всего 9 фишек) существует решение в 5 ходов. И в этом, и во всех предыдущих вариантах головоломки предполагается, что после последнего перестроения фишки стоят в ряд «сомкнутым строем» (без пробелов). Если ряд может содержать пробелы, то существует необычное решение всего лишь в 4 хода.
Напрашиваются и другие варианты головоломки. Насколько известно, их никто ранее не предлагал и уж конечно не решал. Например, в каждом из приведенных нами вариантов головоломки за один ход можно перемещать не по две, а по три (и более) соседние фишки.
Что произойдет, если на первом ходу переместить фишку, на втором — 2 фишки, на третьем — 3 фишки и т. д.? Если в ряд выстроены n фишек одного цвета и затем п фишек другого цвета, то всегда ли правильного чередования цветов можно добиться за n ходов?
Дороги, которые мы выбираем
Маленькая Сьюзен в большом затруднении. Дело в том, что по дороге в школу ее то и дело подстерегает скверный мальчишка Станки.
Станки. Эй, Сьюзен! Можно, я пойду с тобой?
Сьюзен. Нет, очень тебя прошу, уйди!
Сьюзен. Я придумала, что мне делать. Буду ходить в школу каждое утро другой дорогой. Тогда Станки ни за что не догадается, где меня можно подстеречь.
На этой карте показаны все улицы между домам Сьюзен и ее школой. Направляясь в школу по намеченному маршруту, Сьюзен идет либо строга на восток, либо на юг.
Здесь вы видите Сьюзен, идущую в школу по другой дороге. Разумеется, ей не хотелось бы удаляться от школы. Сколькими способами можно добраться от дома Сьюзен до школы?
Сьюзен. Хотела бы я знать, сколько различных дорог ведет от моего дома к школе. Подумаем! Сосчитать их, должно быть, не просто. Впрочем… Есть идея! Сосчитать дороги совсем не трудно! Очень даже просто!
Какая идея пришла в голову Сьюзен?
Вот как она рассудила.
Сьюзен. У того перекрестка, возле которого я живу, поставлено на карте число 1: выйти из дома я могу лишь одним способом. У перекрестков, расположенных в одном квартале к востоку и к югу от дома, я поставлю по 1, потому что до каждого из них можно добраться только одним способом.
Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.
Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.
Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.
Математика может учить логике только тогда, когда преподавание включает творческий подход к решению интересных задач. Эта книга для тех, кто хочет обучать математике так, чтобы у учеников горели глаза.
Перед читателями проходит история возникновения и развития основных идей геометрии, которые и сегодня приводят к новым взглядам и открытиям в кристаллографии, химии, геологии, генетике, микробиологии, архитектуре, строительстве, технике. Плоское и объемное, свойства кристаллов и правильных тел, симметрия, замкнутость и бесконечность Вселенной — эти темы-мелодии сливаются в книге в некий гимн во славу Геометрии. Для иллюстрирования книги использованы гравюры голландского графика М. К. Эсхера, геометрические по своему содержанию. Научно-художественная книга для широкого круга читателей.
Диалоги о математике, предлагаемые вниманию советских читателей, первоначально опубликованные в некоторых физических и философских журналах, впоследствии составили книжку, изданную на венгерском, немецком, английском и других европейских языках. И статьи и сборник вызвали большой интерес среди широких кругов читателей не только благодаря оригинальной форме изложения, но и вследствие довольно глубокой трактовки методологических вопросов математики. Книгу читали не только математики, физики, биологи, инженеры, но и школьники.
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки. Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Знание математики приобретает особое значение в нашу цифровую эпоху. Рассказывая о прошлом, настоящем и будущем математической мысли и о первооткрывателях важнейших математических законов, известный австрийский ученый и популяризатор науки Рудольф Ташнер посвящает нас не только в тайны цифр и чисел, но и шире — в тайны познания. «Из великого множества историй о якобы безмерной власти чисел я отдал предпочтение тем, в которых проводится идея о том, что числа не просто оказались у людей под рукой.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.