Есть идея! - [54]

Шрифт
Интервал

, прежде чем повиснуть на ней, мог бы избежать лишнего шума (колокол B при соблюдении всех мер предосторожности не зазвонил бы). Прежде чем влезть по веревке A, похитителю также следовало бы осторожно натянуть ее.

Во многих классических процедурных задачах, аналогичных задачам о переправах, фигурирует переброшенная через блок длинная веревка, к каждому концу которой прикреплено по корзине. Льюис Кэрролл очень любил следующий вариант такой задачи.

Пленная королева вместе со своим сыном и дочерью заточены в каморке на самом верху высокой башни. Снаружи у их окна прикреплен блок, через который перекинута веревка. На каждом конце веревки висит по корзине. Вес обеих корзин совершенно одинаков. Верхняя корзина, находящаяся как раз против окна темницы, пустая, в нижней корзине, достающей до земли, лежит камень массой 30 кг, служащий противовесом.

Блок сильно заржавел и вращается со скрипом достаточно медленно для того, чтобы спуск в корзине был безопасен для каждого, чья масса превышает массу противовеса не более чем на б кг. При большей разности масс удар о землю может причинить тяжкие увечья. Разумеется, если одна корзина поднимается, то другая опускается.

Масса королевы 78 кг, масса ее дочери 66 кг и масса сына 36 кг. Укажите простейший, то есть состоящий из наименьшего числа шагов, алгоритм побега. Корзины достаточно велики, чтобы вместить либо 2 людей, либо одного человека и камень. При побеге августейшим пленникам никто не помогает, и они не могут помочь себе, потянув за веревку. Иначе говоря, блок действует только в том случае, если масса в одной корзине превосходит массу в другой корзине.

Простейшее решение легко найти, если воспользоваться «аналоговым устройством»: написать массы на отдельных карточках и подвигать их вверх и вниз. Вам не удастся организовать побег всех трех узников менее чем за 9 шагов. Вот как выглядит наиболее экономичный алгоритм побега:

1. Сын вниз, камень вверх,

2. Дочь вниз, сын вверх.

3. Камень вниз.

4. Королева вниз, камень и дочь вверх.

5. Камень вниз.

6. Сын вниз, камень вверх,

7. Камень вниз.

8. Дочь вниз, сын вверх.

9. Сын вниз, камень вверх,

Задачи этого типа иногда усложняются введением животных, которые не могут самостоятельно влезать в корзины и вылезать из корзин. Льюис Кэрролл предлагает следующий вариант предыдущей задачи. На вершине башни вместе с королевой находились не только ее сын, дочь и груз, но и свинья массой 24 кг, собака массой 18 кг и кошка массой 12 кг. Спускать четвероногих нужно с теми же предосторожностями, что и людей, но теперь кто-нибудь непременно должен быть и наверху и внизу, чтобы класть животных в корзины и доставать их оттуда.

Удастся ли вам построить алгоритм побега короче 13 шагов? В обеих задачах тому, кто последним выйдет из корзины, следует поторапливаться, иначе он рискует получить по голове падающим противовесом!

Катастрофа на острове

Орвилл поставил свою машину на берегу небольшого озера.

Орвилл. Какой ровный берег! Для запуска моей радиоуправляемой авиамодели лучшего места не найти. Ни тебе деревьев, ни скал. Единственное дерево — на островке посреди озера.

Орвилл хотел было заставить модель облететь вокруг дерева, но не рассчитал расстояние. Модель врезалась в дерево и упала на землю.

Орвилл не на шутку встревожился. Оставлять модель на острове не хотелось: слишком много сил и средств было израсходовано на нее. Озеро было глубоким, а плавать Орвилл не умел. В багажнике машины у Орвилла на всякий случай хранилась веревка, длина которой на несколько метров превышала поперечник озера в самой широкой части, но как воспользоваться веревкой Орвилл не знал.

И вдруг Орвилла осенила простая и в то же время остроумная идея.

Орвилл. Делать нечего, придется намокнуть, зато модель будет спасена.

Как Орвилл достал свою модель?

Стоит подумать, прежде чем пускаться вплавь

Орвилл достал свою модель следующим остроумным способом. Он подогнал свою автомашину к самому краю воды и привязал к переднему бамперу длинную веревку. Держась за свободный конец веревки, он обошел дважды вокруг озера, отчего веревка обвилась вокруг ствола дерева, и, как следует натянув веревку, привязал свободный конец к бамперу. Получилась подвесная дорога: двойная веревка, натянутая между деревом на острове и бампером автомашины на берегу. Держась за веревку, Орвилл добрался до острова и, захватив модель, благополучно вернулся на берег.

В другой старинной головоломке речь идет о том, как, используя подручные средства, перебраться с суши на остров, который расположен в центре квадратного озера (рис. 8). Путешественнику необходимо побывать на острове. Плавать он, как и Орвилл, не умеет. На берегу путешественник нашел две одинаковые доски, но каждая из них слишком коротка и немного не достает до острова.

Как, пользуясь двумя досками, путешественник может попасть на остров? Решение показано на рис. 9.

Обобщим классическую задачу: предположим, что путешественник нашел на берегу несколько досок. Сможет ли он добраться до острова, если доски окажутся более короткими, чем в классической головоломке?

С тремя досками вы справитесь довольно легко, построив мост, изображенный на рис. 


Еще от автора Мартин Гарднер
Математические головоломки и развлечения

Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.


Математические чудеса и тайны

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Теория относительности для миллионов

Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.


Когда ты была рыбкой, головастиком - я...

      Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.


Обман и чудачества под видом науки

Состояние лженауки на середину двадцатого века с точки зрения науки США  .


А ну-ка, догадайся!

Книга известного американского популяризатора науки Мартина Гарднера, посвященная логическим и математическим парадоксам.Рассчитана на самый широкий круг читателей.


Рекомендуем почитать
Озадачник: 133 вопроса на знание логики, математики и физики

Может ли завтра начаться сегодня? Как быстро перемножить в уме 748 на 1503? Каков минимальный размер черной дыры? Почему не тают ледяные жилища эскимосов, когда в них разводят огонь? Авторы предлагают вам проверить свои знания математики, физики и логики. Каверзные вопросы, варианты ответов с подвохом и подробные решения помогут провести время интересно и с пользой.


Том 31. Тайная жизнь чисел. Любопытные разделы математики

Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.


Том 40. Математическая планета. Путешествие вокруг света

В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.


Том 3. Простые числа. Долгая  дорога к бесконечности

Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.


Том 18. Открытие без границ. Бесконечность в математике

Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.


Геометрия: Планиметрия в тезисах и решениях. 9 класс

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.