Эпигенетика - [57]
Watanabe Y., Yokobayashi S., Yamamoto M., and Nurse P. 2001. Premeiotic S phase is linked to reductional chromosome segregation and recombination. Nature409: 359-363.
Watson J.D. 2003. Celebrating the genetic jubilee: A conversation with James D. Watson. Interviewed by John Rennie. Sci. Am.288: 66-69.
Wei Y., Yu L., Bowen J., Gorovsky M.A., and Allis C.D. 1999. Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell97: 99-109.
Whetstine J.R., Nottke A., Lan R., Huarte M., Smolikov S., Chen Z., Spooner E., Li E., Zhang G., Colaiacovo M., and Shi Y. 2006. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell125: 467-481.
Wolffe A.P. and Matzke M.A. 1999. Epigenetics: Regulation through repression. Science286: 481-486.
Wysocka J., Swigut T., Milne T.A., Dou Y., Zhang X., Burlingame A.L., Roeder R.G., Brivanlou A.H., and Allis C.D. 2005. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell121: 859-872.
Yan Q., Huang J., Fan T., Zhu H., and Muegge K. 2003. Lsh, a modulator of CpG methylation. is crucial for normal histone methylation. EMBO J.22: 5154-5162.
Yu B., Yang Z., Li J., Minakhina S., Yang M., Padgett R.W., Steward R., and Chen X. 2005. Methylation as a crucial step in plant micro RNA biogenesis. Science307: 932-935.
Zhang Y. and Reinberg D. 2001. Transcription regulation by histone methylation: Interplay between different covalent modifications of the core histone tails. Genes Dev.15: 2343-2360.
Zhang Y., LeRoy G., Seeiig H.R, Lane W.S., and Reinberg D. 1998. The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell95: 279-289.
Глава 4. Эпигенетика дрожжей Saccharomyces cerevisiae
Michael Grunstein>1и Susan М. Gasser>2
>1University of California, LosAngeles, California 90095-1570
>2Fried rich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
Общее резюме
В ядре эукариот фракция хроматина, содержащая активные гены, называется эухроматином. Во время митоза она подвергается конденсации, чтобы обеспечить сегрегацию хромосом, а в интерфазе клеточного цикла снова деконденсируется, чтобы сделать возможной транскрипцию. Цитологическими методами было обнаружено, что некоторые хромосомные домены остаются конденсированными и во время интерфазы. Эти конститутивно компактные участки хроматина и были названы гетерохроматином. С развитием новых методов эту часть генома стали определять по молекулярным, а не цитологическим критериям: было показано, что конститутивно компактный хроматин в области центромер и теломер содержит тысячи копий простых повторяющихся последовательностей. Такой гетерохроматин, как правило, реплицируется на поздних этапах S-фазы клеточного цикла и образует скопления по периферии ядра и вблизи ядрышка. Существенной чертой гетерохроматина является способность к стохастичному распространению своей характерной, устойчивой к действию нуклеаз, структуры и связанной с нею репрессии транскрипции на соседние гены. Например, в случае гена white дрозофилы, детерминирующего красный цвет глаз, такая эпигенетическая репрессия проявляется в появлении чередующихся красных и белых участков глаза. Это явление получило название «мозаичность, обусловленная эффектом положения» (position-effect variegation — PEV) В его основе — узнавание метилированной по 9-му остатку лизина формы гистона H3 (H3K9) гетерохроматиновым белком 1 (heterochromatin protein 1 — НР1) и распространение этой метки вдоль хромосомы. У пекарских дрожжей Saccharomyces cerevisiae в ходе эволюции возник другой механизм образования гетерохроматина, но приводит он к очень похожему результату.
S. cerevisiae — микроорганизм, широко используемый при производстве пива и в хлебопечении. Однако, в отличие от бактерий, это — эукариот. Хромосомы у пекарских дрожжей, как и у более сложно организованных эукариот, связаны с гистонами, заключены в ядро и реплицируются в ходе S-фазы клеточного цикла с использованием множественных точек начала репликации (ориджинов).
Тем не менее, геном у дрожжей очень маленький: всего 14 миллионов пар оснований ДНК на 16 хромосом. Это ненамного больше, чем геномы некоторых бактериофагов. Всего в геноме дрожжей около 6000 довольно тесно расположенных генов: промежутки между ними обычно составляют не более 2 т.п.н. (тысяч пар нуклеотидов). Подавляющее большинство генов у дрожжей находится в хроматине открытой конфигурации, обеспечивающей их активную транскрипцию или возможность ее быстрой индукции. Это обстоятельство и очень небольшое количество простых повторяющихся последовательностей ДНК делает практически невозможной детекцию гетерохроматина у дрожжей цитологическими методами.
Тем не менее, с помощью молекулярных методов было показано, что у дрожжей имеются четко выделяющиеся гетерохроматиновые участки по соседству с теломерами всех 16-ти хромосом, а также в двух «молчащих» локусах типов спаривания III хромосомы. Репрессия транскрипции этих двух локусов существенна для поддержания компетентного к спариванию гаплоидного состояния. И субтеломерные области, и «молчащие» локусы типов спаривания репрессируют интегрированные репортерные гены позиционно-зависимым эпигенетическим механизмом, реплицируются во время поздней S-фазы и расположены по периферии ядра. Таким образом, эти локусы имеют все характерные для гетерохроматина черты, за исключением цитологически наблюдаемой конденсации в интерфазе. Для ученого, изучающего гетерохроматин, дрожжи сочетают преимущества малого генома, возможности использования генетических и биохимических методов исследования микроорганизмов и важные аспекты организации хромосом высших эукариот.
Говорят: история умеет хранить свои тайны. Справедливости ради добавим: способна она порой и проговариваться. И при всем стремлении, возникающем время от времени кое у кого, вытравить из нее нечто нежелательное, оно то и дело будет выглядывать наружу этими «проговорками» истории, порождая в людях вопросы и жажду дать на них ответ. Попробуем и мы пробиться сквозь бастионы одной величественной Тайны, пронзающей собою два десятка веков.
Эта книга для людей которым хочется лучше понять происходящее в нашем мире в последние годы. Для людей которые не хотят попасть в жернова 3-ей мировой войны из-за ошибок и амбиций политиков. Не хотят для своей страны судьбы Гитлеровской Германии или современной Украины. Она отражает взгляд автора на мировые события и не претендуют на абсолютную истину. Это попытка познакомить читателя с альтернативной мировой масс медиа точкой зрения. Довольно много фактов и объяснений автор взял из открытых источников.
"Ладога" - научно-популярный очерк об одном из крупнейших озер нашей страны. Происхождение и географические характеристики Ладожского озера, животный и растительный мир, некоторые проблемы экономики, города Приладожья и его достопримечательности - таковы вопросы, которые освещаются в книге. Издание рассчитано на широкий круг читателей.
О друзьях наших — деревьях и лесах — рассказывает автор в этой книге. Вместе с ним читатель поплывет на лодке по Днепру и увидит дуб Тараса Шевченко, познакомится со степными лесами Украины и побывает в лесах Подмосковья, окажется под зеленым сводом вековечной тайги и узнает жизнь городских парков, пересечет Белое море и даже попадет в лесной пожар. Путешествуя с автором, читатель побывает у лесорубов и на плотах проплывет всю Мезень. А там, где упал когда-то Тунгусский метеорит, подивится чуду, над разгадкой которого ученые до сих пор ломают головы.
Книга известного английского писателя Г. Дж. Уэллса является, по сути, уникальным проектом: она читается как роман, но роман, дающий обобщенный обзор всемирной истории, без усложнений и спорных вопросов.
Давайте совершим путешествие вместе с наукой в далёкое прошлое, чтобы прийти к тому времени, когда зарождалась жизнь на Земле, и узнать, как это совершалось. От такого путешествия станет крепче уверенность в силе науки, в силе человеческого разума, в нашей собственной силе.