Эмбрионы, гены и эволюция - [42]
». А в 1969 г. Дейхоф и Экк (Dayhoff, Eck) писали: «Заветная мечта биохимиков состоит в том, чтобы иметь возможность разработать полное, подробное, снабженное количественными параметрами филогенетическое древо - историю происхождения всех видов живых существ до самых ее истоков. Биологи питали эту надежду в течение долгого времени; теперь биохимия имеет реальную возможность выполнить это». Поистине задача, достойная самого Геккеля.
Главное рабочее допущение, принимаемое при построении филогенетического древа на основании данных о нуклеотидных и аминокислотных последовательностях, состоит в том, что в пределах каждого набора гомологичных последовательностей, таких как цитохром с, замены нуклеотидов, а следовательно, и аминокислот происходят с постоянной частотой. Из этой гипотезы постепенности вытекает интересное следствие о том, что скорости замены ведут себя как молекулярные часы, ход которых не зависит от скоростей морфологической эволюции.
В 1963 г. Марголиаш (Margoliash) высказал мысль, что эволюция аминокислотных последовательностей в белках и морфологическая эволюция, возможно, не сопряжены друг с другом. Марголиаш указал, что если истекшее время определяет число замен, накопившихся в данном белке, то эволюция аминокислотной последовательности может служить часами, позволяющими измерить время, прошедшее с момента дивергенции любых двух видов. Он высказал пророческое предположение, что «... полезной проверкой важной роли времени как главного фактора в накоплении изменчивости в цитохроме с должно быть сравнение аминокислотных последовательностей гомологичных белков, выделенных из видов, о которых известно, что они на протяжении длительных периодов времени не претерпевали морфологических изменений, и из быстро изменяющихся видов ...». Использование молекулярных часов для вскрытия зависимости между эволюцией структурных генов и морфологической эволюцией позволило выявить некоторые очень интересные аспекты эволюции генома, ответственные за морфологическое изменение. Дикерсон (Dicherson, 1971) опубликовал превосходное введение в проблему белковых часов, а более новый и исчерпывающий ее разбор дали Вилсон, Карлсон и Уайт (Wilson, Carlson, White, 1977).
Прежде чем обсуждать взаимоотношения между молекулярными часами и морфологической эволюцией, следует установить достоинства и недостатки таких часов.
Данные, лежащие в основе гипотезы об однородной и характерной для каждого данного белка скорости эволюции, представлены на рис. 3-1, где показана зависимость между числом мутационных шагов, оцениваемым по числу различий в аминокислотных последовательностях гомологичных белков, и временем дивергенции организмов, из которых эти белки были выделены. Временем дивергенции считается число лет, прошедших с тех пор, когда у двух данных организмов имелся общий предок, и до настоящего времени. Возьмем, например, цитохром с млекопитающих и рептилий. Палеонтологическая летопись показывает, что звероподобные рептилии дивергировали от других рептилий примерно 300 · 10>6 лет назад. Цитохромы ныне живущих млекопитающих отличаются от цитохромов ныне живущих рептилий примерно 15 заменами на 100 аминокислот. Следовательно, в этом случае на возникновение 15%-ного различия понадобилось 300 · 10>6 лет, или 20 · 10>6 - для различий в 1%. Время, необходимое для 1%-ной дивергенции по любому белку, Дикерсон (Dickerson) назвал единицей эволюционного времени (ЕЭВ). Для цитохрома с, следовательно, ЕЭВ равно 20 · 10>6 лет. У других белков средние скорости эволюции также постоянны, однако абсолютные скорости эволюции у разных белков различны. В частности, для приведенного на рис. 3-1 гемоглобина ЕЭВ равна 5,8 · 10>6 лет, а для фибринопептида - всего 1,1 · 10>6 лет.
Рис. 3-1. Скорости эволюции трех белков: фибринопептидов, гемоглобина и цитохрома с (Dickerson, 1971).
Различия в ЕЭВ отражают, по-видимому, разную степень отбора, которому подвергаются разные белки. Ограничения, налагаемые на скорость замены аминокислот в цитохроме с, вероятно, проистекают из его тесной связи с другими белками, входящими в митохондриальную цепь переноса электронов. Глобины также представляют собой функциональные белки, взаимодействующие как с малыми молекулами, так и с другими субъединицами глобинов. В отличие от них о функции фибринопептидов ничего не известно, за исключением того, что это лишь фрагменты, отрезанные от белка с более длинной цепью - фибриногена - при превращении его в фибрин во время образования кровяного сгустка.
Фитч (Fitch) и Лэнгли (Langley) подвергли проверке гипотезу о молекулярных часах, рассмотрев совокупную скорость для семи различных белков, по которым собраны обширные данные об эволюции их аминокислотных последовательностей. Хотя структурные гены, кодирующие каждый белок, характеризуются собственными частотами допустимых нуклеотидных замен, график зависимости числа замен для этих семи белков от времени, прошедшего после дивергенции организмов, из которых они были выделены, представляет собой прямую линию с наклоном, соответствующим 0,47 · 10 >-9 замен на одну пару нуклеотидов в год. Отклонения наблюдались только для белков, выделенных из тканей приматов. Эти отклонения могут быть результатом различий в скоростях эволюции белков у приматов или же, что более вероятно, ошибочных оценок времени дивергенции среди приматов по причине скудности ископаемых остатков по этой группе. Средняя скорость замены нуклеотидов, определенная Фитчем и Лэнгли, относится только к тем заменам, которые привели к изменению в аминокислотной последовательности. На основе изучения данных о нуклеотидной последовательности РНК, участвующей в синтезе гемоглобина (Salser et al., Forget et al.), Фитч и Лэнгли пришли к заключению, что непроявляющиеся мутации, т. е. изменения оснований, не приводящие к замене одной аминокислоты на другую, могут происходить в пять раз чаще, чем изменения, влекущие за собой аминокислотные замены. Так, общая частота замены нуклеотидов в структурных генах может достигать 2,8 · 10
История ДНК – это сага, полная блестящих научных открытий, невероятных случайностей, грубых ошибок. Она начинается с обнаружения нуклеина в конце 1860-х годов и заканчивается публикацией книги Джеймса Уотсона «Двойная спираль» в 1968 году. За эти 100 лет появились Нобелевская премия, антибиотики, рентгеновская кристаллография, радар и атомная бомба, не говоря уже о том, что прошли две разрушительные мировые войны, – и каждое из этих событий повлияло на открытие ДНК. Джеймс Уотсон и Фрэнсис Крик разгадали загадку двойной спирали, но Гарет Уильямс показывает, что их вклад был последним кусочком гигантского пазла, который собирали несколько десятилетий многие забытые историей ученые.
«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.
О чем рассказал бы вам ветеринарный врач, если бы вы оказались с ним в неформальной обстановке за рюмочкой крепкого не чая? Если вы восхищаетесь необыкновенными рассказами и вкусным ироничным слогом Джеральда Даррелла, обожаете невыдуманные истории из жизни людей и животных, хотите заглянуть за кулисы одной из самых непростых и важных профессий – ветеринарного врача, – эта книга точно для вас! Веселые и грустные рассказы Алексея Анатольевича Калиновского о людях, с которыми ему довелось встречаться в жизни, о животных, которых ему посчастливилось лечить, и о невероятных ситуациях, которые случались в его ветеринарной практике, захватывают с первых строк и погружают в атмосферу доверительной беседы со старым другом! В формате PDF A4 сохранен издательский макет.
Это книга о бродячих псах. Отношения между человеком и собакой не столь идилличны, как это может показаться на первый взгляд, глубоко в историю человечества уходит достаточно спорный вопрос, о том, кто кого приручил. Но рядом с человеком и сегодня живут потомки тех первых неприрученных собак, сохранившие свои повадки, — бродячие псы. По их следам — не считая тех случаев, когда он от них улепетывал, — автор книги колесит по свету — от пригородов Москвы до австралийских пустынь.Издание осуществлено в рамках программы «Пушкин» при поддержке Министерства иностранных дел Франции и посольства Франции в России.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.