Электроны - [33]

Шрифт
Интервал

Первое, что приходит в голову, это то, что магнитные моменты атомов расположены как попало. Раз так, то мы ожидаем размытия пучка.

Но опыт привел к совершенно иным результатам. Пучок атомов никогда не размывается, он расщепляется на две, три, четыре и более компонент в зависимости от сорта атомов. Расщепление всегда симметричное. В некоторых случаях в числе компонент пучка присутствует неотклоненный луч, иногда неотклоненного луча нет, и, наконец, бывает и так, что пучок вовсе не расщепляется.

Из этого опыта, который без сомнения является одним из важнейших экспериментов, проделанных физиками когда-либо, следует, во-первых, что движение электронов около атома действительно можно уподобить электрическому замкнутому току. Уподобить в узком и вполне определенном смысле: так же как и замкнутым токам, атомам можно присвоить магнитный момент. И, далее, магнитные моменты атомов могут образовывать лишь некоторые дискретные углы с направлением вектора магнитной индукции. Иными словами, проекции магнитных моментов на это направление квантуются.

Большим торжеством теоретической физики явилось то, что факты были предсказаны во всех деталях. Из теории следует, что момент импульса и магнитный момент электрона, обязанные своим происхождением движению атомных электронов в поле ядра (эти моменты называются орбитальными[1]), антипараллельны, а их проекции на направление поля могут быть записаны в виде:

L>z = m∙(h/2π), М>z = m∙μ.

Здесь m — целое число, которое может принимать значения 0, 1, 2, 3, h/2π — наименьшее значение проекции момента импульса; μ — наименьшее значение проекции магнитного момента. Величины h и μ, находятся из опытов:

h = 6,62∙10>-27 эрг∙с; μ = 0,93∙10>-20 эрг/Гс.

Добавим еще, что эти важные для физики постоянные величины носят имена великих ученых, заложивших основы квантовой физики: h называют постоянной Планка, μ — магнетоном Бора.

Однако постулаты квантовой механики оказались недостаточными, чтобы разобраться в различном характере расщепления пучков атомов разных элементов. Даже простейшие атомы — атомы водорода — вели себя неожиданно. Пришлось к законам квантовой механики добавить еще одну исключительно важную гипотезу, о которой мы уже мельком упоминали. Электрону (а позже оказалось, что и любой элементарной частице) надо приписать собственный момент импульса (спин) и соответственно собственный магнитный момент. Чтобы понять неизбежность уподобления электрона магнитной стрелке, нам надо сначала познакомиться поподробней с характером движения атомных электронов.


ЭЛЕКТРОННОЕ ОБЛАКО АТОМА

Невозможно увидеть движение электрона. Более того, нельзя надеяться на то, что прогресс науки приведет нас к тому, — что мы увидим электрон. Причина достаточно ясна. Чтобы «увидеть», надо «осветить». Но «осветить» — это значит подействовать на электрон энергией какого-либо луча. Электрон же настолько мал, обладает столь крошечной массой, что всякое вмешательство с помощью прибора для рассматривания неизбежно приведет к тому, что электрон уйдет с того места, где он находился ранее.

Не только те скромные сведения о строении атомов, которые сейчас будут сообщены читателю, но и все стройное учение об электронной структуре вещества являются плодом теории, а не эксперимента. Однако мы уверены в ее справедливости благодаря неисчислимому количеству наблюдаемых на опыте следствий, которые строжайшими логическими рассуждениями выводятся из теории. Картину электронного строения, которую нельзя увидеть, мы устанавливаем с той же степенью уверенности, с которой Шерлок Холмс по следам, оставленным преступником, устанавливал картину преступления.

Огромным источником доверия к теории является уже то, что картина электронного строения предсказывается с помощью тех же законов квантовой физики, которые устанавливаются другими опытами.

Мы уже рассказали, что порядковый номер химического элемента в таблице Менделеева есть не что иное, как заряд его ядра или, что то же самое, число принадлежащих нейтральному атому электронов. У атома водорода один электрон, гелия — два, лития — три, бериллия — четыре и т. д.

Как же движутся все эти электроны? Ответ на этот вопрос далеко не прост, и ответ на него носит лишь приближенный характер. Сложность проблемы заключается в том, что электроны взаимодействуют не только с ядром, но и друг с другом. К счастью, оказывается, что взаимное отталкивание (избегание) электронов играет все же меньшую роль, чем движение, которое обязано взаимодействию электрона с ядром. Только это обстоятельство и позволяет сделать выводы о характере движения электронов в различных атомах.

Каждому электрону природой отведена пространственная область, внутри которой он движется. По форме этих областей электроны делятся на категории, обозначаемые латинскими буквами s, р, d и f.

Наиболее простой является «квартира» s-электрона. Она представляет собой сферический слой. Теория показывает, что электрон чаще всего бывает в центре сферического слоя. Так что говорить о круговой орбите такого электрона — это грубое упрощение.

Область пространства, в которой путешествует


Еще от автора Александр Исаакович Китайгородский
Молекулы

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Физические  тела

Переиздание первой части книги Ландау Л. Д. и Китайгородского А. И. «Физика для всех» (Движение, теплота). Цель книги дать читателю в общедоступной форме отчетливое представление об основных идеях и новейших достижениях современной физики. Движение тел рассмотрено с двух точек зрения — наблюдателя в инерциальной и неинерциальной системах координат. Весьма детально изложены закон всемирного тяготения и его применение для расчетов космических скоростей, для интерпретации лунных приливов, для геофизических явлений. Книга рассчитана на самый широкий круг читателей — от впервые знакомящихся с физикой до лиц с высшим образованием, проявляющих интерес к данной науке.


Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.


Предисловие к русскому изданию книги «Парапсихология» (Ч.Хэнзел)

…Борьба против лженауки – это борьба против заблуждений, взятых на вооружение повседневной жизнью. Это борьба против ошибок разума, а не чувств, в отношении которых слово «обман» вообще не имеет смысла…


Невероятно - не факт

Книга посвящена применению законов теории вероятностей к различным жизненным ситуациям и в разных областях науки. В ней рассказывается, как пользуются законом вероятности физики и кинорежиссеры, селекционеры и юристы, социологи и механики и т.д.


Проблема № 2

Статья о явлении сверхпроводимости из журнала «Техника – молодежи» № 11, 1975.


Рекомендуем почитать
Ядерная зима. Что будет, когда нас не будет?

6 и 9 августа 1945 года японские города Хиросима и Нагасаки озарились светом тысячи солнц. Две ядерные бомбы, сброшенные на эти города, буквально стерли все живое на сотни километров вокруг этих городов. Именно тогда люди впервые задумались о том, что будет, если кто-то бросит бомбу в ответ. Что случится в результате глобального ядерного конфликта? Что произойдет с людьми, с планетой, останется ли жизнь на земле? А если останется, то что это будет за жизнь? Об истории создания ядерной бомбы, механизме действия ядерного оружия и ядерной зиме рассказывают лучшие физики мира.


Загадка падающей кошки и фундаментальная физика

Как падающим кошкам всегда удается приземлиться на четыре лапы? Удивительно, сколько времени потребовалось ученым, чтобы ответить на этот вопрос! История изучения этой кошачьей способности почти ровесница самой физики — первая исследовательская работа на тему падающей кошки была опубликована в 1700 г. французом Антуаном Параном, но даже сегодня ученые продолжают находить в ней спорные моменты. В своей увлекательной и остроумной книге физик и заядлый кошатник Грегори Гбур показывает, как попытки понять механику падения кошек помогли разобраться в самых разных задачах в математике, физике, физиологии, неврологии и космической биологии, способствовали развитию фотографии и кинематографа и оказали влияние даже на робототехнику. Поиск ответа на загадку падающей кошки погружает читателей в увлекательный мир науки, из которого они узнают решение головоломки, но также обнаружат, что феномен кошачьего выверта по-прежнему вызывает горячие споры ученых. Автор убежден, что чем больше мы исследуем поведение этих животных, тем больше сюрпризов они нам преподносят.


Атом урана — новый источник энергии

Статья опубликована в журнале «Огонек», № 35 (954), 1945.


Вторжение в физику 20-го века

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Молния и гром

В очередном выпуске серии «Научно-популярная библиотека» рассказывается о том, как возникают молния и гром, какой вред может причинить молния и как защититься от её разрушительного воздействия. В начале книги даются основные сведения об электричестве.



Фотоны и ядра

В заключительной из четырех книг «Физика для всех» изложены основные сведения, специфичные для электромагнитных волн, проблема теплового излучения, учение о спектрах, приведены примеры наиболее распространенных лазеров, много внимания уделено ядерной физике. Отдельные разделы посвящены обобщению механики на случай быстрых движений (специальная теория относительности) и движения малых частиц (волновая механика). Для широкого круга читателей, проявляющих интерес к данной науке.