Электроны - [23]
Разделение твердых тел на различные классы по величине их электрического сопротивления определяется подвижностью электронов.
Электрический ток представляет собой поток движущихся заряженных частиц. Когда речь идет о потоках ионов или электронов, мы буквально видим электрический ток. При прохождении через жидкости электрический ток также проявляет себя вполне отчетливо, поскольку на электродах происходит отложение вещества. Что же касается твердых тел, то о том, что собой представляет протекающий по ним ток, мы должны судить лишь косвенно.
Имеется ряд фактов, которые позволяют утверждать следующее. В любых твердых телах атомные ядра не перемещаются. Электрический ток создается электронами. Электроны движутся под действием энергии, которая поставляется источником тока. Этот источник создает внутри твердого тела электрическое поле.
Формула, связывающая напряжение и напряженность электрического поля, остается в силе для любых проводников. Поэтому, объединяя формулы, приведенные на стр. 11 и 18, мы можем записать закон Ома для твердого проводника в форме:
j = σ∙Е
(σ = 1/ρ называется удельной электропроводностью).
Электроны твердого тела можно разделить на связанные и свободные. Связанные электроны принадлежат определенным атомам, свободные электроны образуют своего рода электронный газ. Эти электроны могут перемещаться по твердому телу. При отсутствии электрического напряжения поведение свободных электронов беспорядочно. Чем больше помех движению свободных электронов, чем чаще они сталкиваются с неподвижными атомами и друг с другом, тем больше электрическое сопротивление тела.
В диэлектриках подавляющее большинство электронов имеет своего хозяина — атом или молекулу. Число свободных электронов ничтожно.
В металлах каждый атом отдает один-два электрона в общее пользование. Этот электронный газ и является переносчиком тока.
Исходя из очень грубой модели, мы можем прикинуть величину электропроводности и проверить эту модель.
Так же, как мы это делали, когда вели рассуждения относительно газа молекул, предположим, что каждому электрону удается пройти без соударения некоторый путь l. Расстояние между атомами металла равно нескольким ангстремам. Логично допустить, что длина свободного, пробега электронов по порядку величины равна 10 А°, т. е. 10>-7 см.
Под действием ускоряющей силы еЕ движение электрона происходит в течение времени l/v, где v — скорость электрона. Используя данные, взятые из исследований термоэлектронной эмиссии, хаотическую скорость электронов можно оцепить. Порядок величины этой скорости 10>8 см/с.
Чтобы определить скорость упорядоченного движения электронов, т. е. скорость того движения, которое создает ток, надо помножить ускорение еЕ/m на время свободного пробега. Этим допускается, что каждое соударение прекращает движение электрона, после чего он начинает набирать скорость вновь. Произведя умножение, мы получим значение скорости электронов, создающих ток:
u = e∙E∙l/m∙v
Теперь поставим перед собой задачу вычислить удельное сопротивление металла. Если получим правильный порядок величины, то значит наша модель «работает».
Предоставим читателю сообразить, что плотность тока) может быть записана как произведение числа электронов в единице объема на заряд электрона и на упорядоченную скорость: j = n∙е∙u. Подставляя в эту формулу значение упорядоченной скорости электронов, поручим: j = (n∙e>2∙l/m∙v)∙Е, т. е. удельная электропроводность равна
σ = n∙e>2∙l/m∙v
Если считать, что каждый атом отдает в общее пользование один электрон, то получится, что проводник имеет удельное сопротивление порядка 10>-5 Ом∙м. Очень разумная величина! Она подтверждает как справедливость грубой модели, так и правильность выбора значения параметров нашей «теорий». Я ставлю слово «теория» в кавычки лишь по той причине, что она груба и элементарна. Однако этот пример иллюстрирует типичный физический подход к истолкованию явлений.
Согласно теории свободного электронного газа электрическое сопротивление должно уменьшаться с падением температуры. Только не торопитесь связывать это обстоятельство с изменением хаотической скорости движения электронов. Дело не в ней. Эта скорость мало зависит от температуры. Уменьшение сопротивления связано с тем, что размах колебаний атомов становится меньше, а благодаря этому растет длина свободного пробега электронов.
Этот же факт можно передать и такими словами: при увеличении амплитуд колебания атомов электроны в большей степени рассеиваются в разные стороны. Конечно, благодаря этому слагающая скорости в направлении тока должна уменьшиться, т. е. сопротивление должно возрасти.
Увеличением рассеяния электронов объясняют также возрастание сопротивления металла (и не только металла) с добавлением примесей. Действительно, примесные атомы играют роль дефектов кристаллической структуры и следовательно способствуют рассеянию электронов.
Электрическая энергия передастся по проводам. Из-за электрического сопротивления провода забирают энергию у источника тока. Потери эти огромны, и борьба с ними представляет собой важнейшую техническую задачу.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Переиздание первой части книги Ландау Л. Д. и Китайгородского А. И. «Физика для всех» (Движение, теплота). Цель книги дать читателю в общедоступной форме отчетливое представление об основных идеях и новейших достижениях современной физики. Движение тел рассмотрено с двух точек зрения — наблюдателя в инерциальной и неинерциальной системах координат. Весьма детально изложены закон всемирного тяготения и его применение для расчетов космических скоростей, для интерпретации лунных приливов, для геофизических явлений. Книга рассчитана на самый широкий круг читателей — от впервые знакомящихся с физикой до лиц с высшим образованием, проявляющих интерес к данной науке.
Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.
Книга посвящена применению законов теории вероятностей к различным жизненным ситуациям и в разных областях науки. В ней рассказывается, как пользуются законом вероятности физики и кинорежиссеры, селекционеры и юристы, социологи и механики и т.д.
…Борьба против лженауки – это борьба против заблуждений, взятых на вооружение повседневной жизнью. Это борьба против ошибок разума, а не чувств, в отношении которых слово «обман» вообще не имеет смысла…
Эта книга в основном о научных методах исследования.Применение их в естествознании способствовало невиданному его успеху. В науках же, изучающих духовную жизнь людей, эти методы только начинают внедряться и, естественно, сталкиваются с рядом трудностей.В книге показано, каков характер этих трудностей, как научное знание борется с легковерием, пустословием, лжеучениями и как забвение научного подхода к исследованиям тех или иных явлений открывает дорогу всевозможным «чудесам» к которым, в частности, можно отнести и телепатию.
Александр Дементьев – журналист (работал в таких изданиях, как РБК, «Ведомости», Лента.ру), закончил МПГУ (бывш. МГПИ им. Ленина) по специальности общая и экспериментальная физика. Автор самого крупного научно-популярного канала «Популярная наука» на «Яндекс. Дзен». Перед вами – уникальная книга, которая даст возможность по-новому взглянуть на космос. Человечество стоит на пороге больших открытий за пределами нашей планеты. И они кардинально изменят жизнь людей! Из книги вы узнаете: • Что ждет Землю и Солнце в будущем.
Квантовая физика – очень странная штука. Она утверждает, что одна частица может находиться в двух местах одновременно. Больше того, частица – это еще и волна, и все происходящее в квантовом мире может быть представлено как взаимодействие волн – или частиц, как вам больше нравится. Все это было понятно уже к концу 1920-х годов. За это время было испробовано немало разных более или менее убедительных интерпретаций. Известный популяризатор науки Джон Гриббин отправляет нас в захватывающее путешествие по «большой шестерке» таких объяснений, от копенгагенской интерпретации до идеи множественности миров. Все эти варианты в разной степени безумны, но в квантовом мире безумность не равносильна ошибочности, и быть безумнее других не обязательно значит быть более неверным.
Как падающим кошкам всегда удается приземлиться на четыре лапы? Удивительно, сколько времени потребовалось ученым, чтобы ответить на этот вопрос! История изучения этой кошачьей способности почти ровесница самой физики — первая исследовательская работа на тему падающей кошки была опубликована в 1700 г. французом Антуаном Параном, но даже сегодня ученые продолжают находить в ней спорные моменты. В своей увлекательной и остроумной книге физик и заядлый кошатник Грегори Гбур показывает, как попытки понять механику падения кошек помогли разобраться в самых разных задачах в математике, физике, физиологии, неврологии и космической биологии, способствовали развитию фотографии и кинематографа и оказали влияние даже на робототехнику. Поиск ответа на загадку падающей кошки погружает читателей в увлекательный мир науки, из которого они узнают решение головоломки, но также обнаружат, что феномен кошачьего выверта по-прежнему вызывает горячие споры ученых. Автор убежден, что чем больше мы исследуем поведение этих животных, тем больше сюрпризов они нам преподносят.
Что случилось с Венерой? Как Сатурн стал властелином колец? Где искать Девятую планету? Почему мы не видим облако Оорта? Что мы знаем о самой большой звезде? Как живут звезды после смерти? Как галактики воруют друг у друга? Как сфотографировать черную дыру? Какая галактика самая большая? Эта книга отправит вас в космическое путешествием вместе с экспертами журнала New Scientist. Стартуя от Солнца, мы посетим планеты земной группы, газовые гиганты и их спутники, пересечем облако Оорта и выйдем за границы Млечного Пути.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.
В заключительной из четырех книг «Физика для всех» изложены основные сведения, специфичные для электромагнитных волн, проблема теплового излучения, учение о спектрах, приведены примеры наиболее распространенных лазеров, много внимания уделено ядерной физике. Отдельные разделы посвящены обобщению механики на случай быстрых движений (специальная теория относительности) и движения малых частиц (волновая механика). Для широкого круга читателей, проявляющих интерес к данной науке.