Электроны - [24]

Шрифт
Интервал

Есть надежда, что эта задача может быть решена, ибо существует замечательное явление сверхпроводимости.

Голландским физиком Камерлинг-Оннесом в 1911 г. было обнаружено, что при температурах, близких к абсолютному нулю, некоторые тела скачком теряют практически полностью свое электрическое сопротивление. Если в кольце сверхпроводника возбудить электрический ток, то он будет течь в проводнике сутками, не затухая. Из чистых металлов наиболее высокой температурой, при которой проявляются сверхпроводящие свойства, обладает ниобий (9 К). Не приходится и говорить, сколь настойчиво занят огромный отряд ученых поиском сверхпроводников, которые приобрели бы это замечательное свойство при более высокой температуре. Пока что успехи не очень велики. Найден сплав, который как будто становится сверхпроводящим при температуре около 20 К.

Однако есть основания полагать, что этот предел можно будет повысить (а может быть и довести до комнатных температур). Поиск ведется среди особых полимерных веществ, среди сложных слоистых материалов, в которых диэлектрик чередуется с металлом. Трудно переоценить значимость этой проблемы. Я беру на себя смелость считать ее одной из важнейших проблем современной физики.

Работы по поиску сверхпроводников, приобретающих это свойство при достаточно высоких температурах, приняли большой размах после того, как была построена теория этого явления. Теория подсказала пути поиска нужных материалов.

Характерно, что между открытием явления и его объяснением прошло очень много времени. Теория была создана в 1957 г. Надо отметить, что законы квантовой физики, с помощью которых построена теория сверхпроводимости, были установлены еще в 1926 г. Из этого следует, что объяснение явления было далеко не простым. В этой книжке я могу лишь дать объяснение, так сказать, с середины истории. Оказывается, что по мере замедления колебаний атомной решетки некоторым электронам удается «спариться». Такая «пара» ведет себя согласованно. Когда происходит рассеяние пары на атомах (а именно это рассеяние и есть, как мы говорили выше, причина сопротивления), то отскакивание одного из членов пары в сторону компенсируется поведением его «друга». Компенсируется в том смысле, что суммарный импульс пары электронов остается неизменным. Таким образом, рассеяние электронов не исчезает, но перестает влиять на прохождение тока.

Наряду со спаренными электронами в сверхпроводнике существует и обычный электронный газ. Таким образом, одновременно существуют как бы две жидкости — одна обычная, другая сверхпроводящая. Если температура сверхпроводника начинает повышаться от нуля, то тепловое движение будет разрывать все большее число «пар» электронов — доля обычного электронного газа будет расти. Наконец наступит критическая температура, при которой исчезнут последние спаренные электроны.

С помощью модели двух жидкостей, обычной и особенной, мы объяснили во второй книге явление сверхтекучести, наблюдаемое в жидком гелии. Эти два явления находятся в близком родстве: сверхпроводимость — это сверхтекучесть электронной жидкости.

Пара электронов, о которой мы только что сказали, имеет суммарный спин нуль. Частицы, спин которых равен нулю или целому числу, называются бозонами. При известных условиях бозоны могут собираться в больших количествах на одном и том же энергетическом уровне. В этом случае их движение становится идеально согласованным и их перемещению ничто не может помешать. Мы еще вернемся к этому явлению в четвертой книге.


ВЫХОД ЭЛЕКТРОНОВ ИЗ МЕТАЛЛА

Поскольку часть электронов ведет себя наподобие газа быстрых частиц, то естественно ожидать, что электроны способны выбираться за поверхность металла. Для того чтобы электрон покинул металл, ему надо преодолеть силы притяжения положительных ионов. Работа, которую электрону приходится затратить для достижения этой цели, называют работой выхода.

Чем выше температура металла, тем больше кинетическая скорость движения электронов. Если металл раскалить, то покинуть его удастся заметному числу электронов.

Исследовать явление термоэлектронной эмиссии — так называют выход электронов из металла — можно с помощью простого опыта. В электрическую лампу впаивается дополнительный электрод. Чувствительным прибором можно измерить величину электрического тока, который будет возникать из-за того, что часть «испаряющихся» электронов попадет на электрод (часть, а не все, по той причине, что электроны вылетают из нити лампы под разными углами).

Если мы хотим оценить работу выхода, то следует прибегнуть к «заградительному» напряжению, т. е. подвести к впаянному электроду отрицательный полюс аккумулятора. Постепенно повышая напряжение, мы доберемся до такого его значения, при котором электронам уже не удастся достигнуть электрода.

Работа выхода электронов для вольфрама равняется примерно 5 электрон-вольтам. Можно, если требуется, специальными покрытиями снизить эту работу до значения одного электрон-вольта.

Что же это за единица работы — электрон-вольт? Не трудно сообразить по названию, что она равна энергии, которую приобретет электрон, пройдя участок пути, находящийся под напряжением в 1 В. Один электрон-вольт равен 1,6∙10


Еще от автора Александр Исаакович Китайгородский
Молекулы

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Физические  тела

Переиздание первой части книги Ландау Л. Д. и Китайгородского А. И. «Физика для всех» (Движение, теплота). Цель книги дать читателю в общедоступной форме отчетливое представление об основных идеях и новейших достижениях современной физики. Движение тел рассмотрено с двух точек зрения — наблюдателя в инерциальной и неинерциальной системах координат. Весьма детально изложены закон всемирного тяготения и его применение для расчетов космических скоростей, для интерпретации лунных приливов, для геофизических явлений. Книга рассчитана на самый широкий круг читателей — от впервые знакомящихся с физикой до лиц с высшим образованием, проявляющих интерес к данной науке.


Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.


Предисловие к русскому изданию книги «Парапсихология» (Ч.Хэнзел)

…Борьба против лженауки – это борьба против заблуждений, взятых на вооружение повседневной жизнью. Это борьба против ошибок разума, а не чувств, в отношении которых слово «обман» вообще не имеет смысла…


Невероятно - не факт

Книга посвящена применению законов теории вероятностей к различным жизненным ситуациям и в разных областях науки. В ней рассказывается, как пользуются законом вероятности физики и кинорежиссеры, селекционеры и юристы, социологи и механики и т.д.


Модели молекул

Об использовании механических моделей молекул для решения различных физических проблем.


Рекомендуем почитать
Загадка падающей кошки и фундаментальная физика

Как падающим кошкам всегда удается приземлиться на четыре лапы? Удивительно, сколько времени потребовалось ученым, чтобы ответить на этот вопрос! История изучения этой кошачьей способности почти ровесница самой физики — первая исследовательская работа на тему падающей кошки была опубликована в 1700 г. французом Антуаном Параном, но даже сегодня ученые продолжают находить в ней спорные моменты. В своей увлекательной и остроумной книге физик и заядлый кошатник Грегори Гбур показывает, как попытки понять механику падения кошек помогли разобраться в самых разных задачах в математике, физике, физиологии, неврологии и космической биологии, способствовали развитию фотографии и кинематографа и оказали влияние даже на робототехнику. Поиск ответа на загадку падающей кошки погружает читателей в увлекательный мир науки, из которого они узнают решение головоломки, но также обнаружат, что феномен кошачьего выверта по-прежнему вызывает горячие споры ученых. Автор убежден, что чем больше мы исследуем поведение этих животных, тем больше сюрпризов они нам преподносят.


Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Масса атомов. Дальтон. Атомная теория

Джон Дальтон является основоположником атомной теории и одним из создателей современной химии. Преподаватель скромной начальной школы Манчестера обратился к идеям, сформулированным за тысячу лет до него Демокритом и другими греческими философами, и предположил, что весь мир состоит из неделимых атомов и в результате их взаимодействия появляются элементы, которые, в свою очередь, образуют химические соединения. Несмотря на то что существование атомов вызывало серьезные споры вплоть до начала XX века — то есть и через 100 лет после публикации труда Дальтона, — именно работа этого просветителя, не получившего университетского образования, легла в основу концептуальной революции, изменившей лицо науки.


Атом урана — новый источник энергии

Статья опубликована в журнале «Огонек», № 35 (954), 1945.


Резерфорд

Книга Д.Данина посвящена величайшему физику-экспериментатору двадцатого столетия Эрнесту Резерфорду (1871–1937).


По ту сторону кванта

Бытует упорное мнение, что в науке есть факты, которые начинающим с нею знакомиться знать рано, а сообщать искушенным в ней — стыдно. Чаще всего об этом вспоминают, когда пытаются объяснить строение атома. Быть может, поэтому до сих пор не написана книга о квантовой механике достаточно строгая, чтобы не обидеть знатока, достаточно простая, чтобы не отпугнуть новичка, и вместе с тем интересная им обоим.Эта книга не для знатоков, хотя и они найдут здесь несколько неожиданных фактов. Она для тех, кто заканчивает школу, и для тех, кто пытается посмотреть на мир немного шире, чем позволяет им их специальность — необходимо узкая, чтобы быть продуктивной.В предлагаемой книге история атома рассказана вполне строго.


Фотоны и ядра

В заключительной из четырех книг «Физика для всех» изложены основные сведения, специфичные для электромагнитных волн, проблема теплового излучения, учение о спектрах, приведены примеры наиболее распространенных лазеров, много внимания уделено ядерной физике. Отдельные разделы посвящены обобщению механики на случай быстрых движений (специальная теория относительности) и движения малых частиц (волновая механика). Для широкого круга читателей, проявляющих интерес к данной науке.