Двигатели жизни. Как бактерии сделали наш мир обитаемым - [23]

Шрифт
Интервал

, сложив вместе название «рибоза» и греческое слово «сома» (тело).


Рис. 9. Электронная микрофотография тонкого среза клетки зеленой водоросли. Этот организм является эукариотом (см. рис. 8) и, подобно всем эукариотам, содержит несколько внутриклеточных органоидов, ограниченных мембранами. В данной клетке такими органоидами являются хлоропласт (C), митохондрии (M), ядро (N) и аппарат Гольджи (G). (Оригинальная микрофотография, сделанная Майроном Ледбеттером и Полом Фальковски.)


Рис. 10. Схема строения рибозы и дезоксирибозы. Первая содержится в рибонуклеиновой кислоте (РНК), вторая – в дезоксирибонуклеиновой кислоте (ДНК)


Рибосомы – это микроскопические механизмы, которые забирают информацию у последовательности ДНК посредством молекулы-посредника. Такая молекула является зеркальной, или комплементарной, к гену, который представляет собой матрицу белковой последовательности. Комплементарная цепочка РНК называется информационной, или матричной РНК. Информация, содержащаяся в информационной РНК, сообщает рибосоме, какие аминокислоты и в каком именно порядке следует химически прикрепить друг к другу. Получающиеся в результате цепочки аминокислот и становятся теми самыми белками, которые необходимы клеткам, чтобы функционировать, восстанавливать себя и создавать новые клетки.

Поскольку все основные составляющие клеток либо являются белками, либо зависят от белков в своем формировании, можно сказать, что рибосомы – абсолютно необходимые компоненты в каждой клетке. Однако это чрезвычайно сложные механизмы. Их диаметр составляет всего лишь около 20–25 нанометров (нанометр – это 1/1000 доля микрометра, который в свою очередь составляет 1/1000 долю миллиметра), ввиду чего их очень трудно увидеть даже с помощью электронного микроскопа. Перед учеными встала дилемма: как можно исследовать одну из самых основных функций клетки – производство белков, не имея возможности видеть стоящие за этим механизмы? Однако именно здесь подоспели на помощь биохимики и физики.

Биохимики специализируются на описании отдельных компонентов клеток. Их основная методика заключается в том, чтобы вытащить из клетки те или иные части и посмотреть, как они работают. Начинают биохимики обычно с того, что разрушают клетки и разделяют получившийся материал на различные компоненты. Основным инструментом для такого разделения служит центрифуга, которая раскручивает материал на высокой скорости, так что его составляющие разделяются на фракции в соответствии со своей массой: чем тяжелее частица, тем дальше в центрифужной пробирке она окажется. При помощи такой высокоскоростной центрифуги Паладе сумел отделить те самые структуры, похожие на ворсистые шарики, которые он увидел в электронный микроскоп.


Рис. 11. Схема, иллюстрирующая функционирование рибосомы. Этот наномеханизм образует белки при помощи информационной матрицы, изначально закодированной в ДНК и перенесенной при помощи молекулы информационной РНК (иРНК). Молекула иРНК обеспечивает информацию о последовательности аминокислот, необходимой для образования конкретного белка; для каждого белка в клетке имеется собственная иРНК. Рибосома, также содержащая РНК, но образующая более крупную структуру из многих белков, «считывает» информацию с молекулы иРНК и при помощи третьей молекулы РНК с прикрепленной к ней определенной аминокислотой (транспортной РНК, тРНК) выстраивает белки, наращивая их по одной аминокислоте за раз. Белок появляется из рибосомы, чтобы занять надлежащее место внутри клетки


Однако вопрос оставался открытым: как, собственно, функционируют рибосомы? Сумев изолировать рибосомы, Паладе и его коллеги определили, что эти структуры состоят из белков и еще одного типа молекул РНК, отличного от информационной РНК. Вскоре было доказано, что эти крошечные шарики могут образовывать белки прямо в пробирке, если предоставить им необходимые компоненты. Однако даже самые лучшие электронные микроскопы не могли показать, что находится внутри изолированных Паладе рибосом. Для решения этой проблемы требовалось еще более мощное орудие распознавания.

В начале XX столетия, вскоре после открытия радиоактивности, физики обнаружили, что рентгеновские лучи, представляющие собой чрезвычайно высокоэнергетические частицы света, рассеиваются кристаллами строго определенным образом. Рентгеновское излучение гораздо более высокоэнергетичное, нежели электроны, и может отображать совсем крошечные структуры – вплоть до уровня отдельных атомов. Физики и химики сделали множество рентгеновских изображений кристаллов, слегка меняя их ориентацию, благодаря чему смогли определить расположение отдельных атомов внутри кристаллической решетки. Такой же подход впоследствии был применен для описания структуры сепарированных компонентов клетки, и вскоре после Второй мировой войны стало возможным определение расположения атомов в кристаллической решетке белков. Это была чрезвычайно скрупулезная работа: необходимо было получить и наложить друг на друга сотни рентгеновских изображений – все это в отсутствие компьютеров. При помощи обратного вычисления угла рассеяния рентгеновских лучей, прошедших через структуру, физики и химики могли судить о строении молекулы, даже если ее и нельзя было увидеть непосредственно с помощью микроскопа. Постепенно становились доступны компьютеры и рентгеновские источники повышенной мощности – такие, как синхротронные источники излучения, один из которых располагался через улицу напротив моего здания в Брукхэвенской национальной лаборатории, – и ученые описывали структуры все новых и новых белков. Эти описания содержатся в архиве химического факультета моего университета; любой человек, имеющий компьютер, может найти их в Сети.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.