Догонялки с теплотой - [17]
А тем, кто думают, что могут что-то объяснить с помощью энтропии, хорошо бы вспомнить про казахстанских сайгаков, да и про всю остальную одушевлённую живность. В их организмах весело трепыхаются такие биомолекулы, которые принципиально неустойчивы в неодушевлённой обстановке. В их организмах протекают такие биохимические реакции – в такую сторону и с такой бешеной скоростью – которые совершенно невозможны в неодушевлённой обстановке. Всё это настолько ужасно противоречит термодинамике с её жалкими «началами», что академики всерьёз обсуждали вопрос о том, что в живых организмах понятие энтропии работает с точностью до наоборот – и, чтобы термодинамика была и здесь справедлива, следует говорить не об энтропии, а об отрицательной энтропии (негэнтропии, как они выражались). Ну, потрындели, и чего? Помогла вам энтропия, с негэнтропией в обнимку, понять – откуда берётся энергия на работу мышц, если она берётся не из энергии химических связей съеденной пищи?
А вот Николаевский, говоря «Об энергетике мышц. О дыхании», поясняет, как мышцы работают. Секрет – в дополнительном управлении, которым охвачено одушевлённое вещество по сравнению с неодушевлённым. Получается так: в мышечном цикле использованы две биохимические реакции: множественные присоединения кислорода к длинным мышечным молекулам, отчего эти молекулы укорачиваются, и обратное отсоединение кислорода, в результате которого восстанавливается исходная длина мышечных молекул. Для обеспечения единогласного срабатывания либо той, либо другой из этих реакций, молекулы мышечных волокон переключают в одно из двух активных состояний. В первом из этих состояний создаются идеальные условия для реакции множественного присоединения кислорода, который доставляется с кровотоком. Во втором из этих состояний, присоединённый кислород «отваливается», связываясь с углеродом, поставщиком которого являются молекулы углеводов, и затем этот кислород, в составе углекислого газа, удаляется с кровотоком, освобождая место для новой порции кислорода. Спрашивается: ведь атомы в одушевлённом организме точно такие же, как и в неодушевлённом веществе! Что же может в них «переключаться»? Похоже, это совсем просто: у них переключаются конфигурации направленных валентностей. Академики не понимают, как такое может быть – да они не понимают и того, чем внешние валентные электроны отличаются от внешних невалентных, а, значит, они не понимают и того, что такое химическая связь вообще. Но зачем нам равняться на академиков? Будем равняться на тех, кто отвечает на интересные вопросы! Если, благодаря автоматическим переключениям направленных валентностей, существуют динамические структуры металлов и воды – то, управляя конфигурациями направленных валентностей в специально разработанных биомолекулах, можно вытворять что угодно!
Эх, Термодинамика! Прости, милая!..
(По материалам сайта «Наброски для новой физики», http://newfiz.narod.ru )
Канонизированная версия появления теории относительности (ТО), вкратце, такова. На рубеже XIX-XX веков был в оптике движущихся тел жуткий кризис. Физики захлебнулись в противоречиях, сидели в прострации и не знали, что делать дальше. Тут-то Эйнштейн и вывел этих недотёп на путь истинный. Все-то противоречия его ТО устранила, все-то эксперименты она объяснила, да ещё кучу предсказаний сделала – и все они великолепно подтвердились на опыте! Ну, красная цена канонизированным версиям хорошо известна: «Боже мой, что скажет история?» - «Да не волнуйтесь, история солжёт, как всегда!»И точно! Никаких противоречий ТО не устранила: она их послала куда подальше, а от себя новых насадила, ласково называя их парадоксами.
Вся история физики, от начала времен и до наших дней, изложенная честно и беспристрастно. Естественно, как честный человек, описывая современное состояние предмета, автор приходит к вполне очевидному для наших современников (даже совершенно не знающих физики!) выводу:"Когда я слышу, что Галилей заложил основы научного физического метода, я понимаю: мелко же плавал этот Галилей! Куда ему до титанов, которые заложили и перезаложили всю физику с потрохами. Так оно всегда и выходит, когда любителей вытесняют профессионалы.".
Помните, как в школе мы все замирали словно кролики перед удавом перед законом про "всемирное тяготение" всех масс в мире друг к другу. Нам рисовали на доске двухэтажную формулу, а вместо её доказательства рассказывали анекдот про яблоко, поразившее в темечко спящего автора, который проснулся от удара и тут же этот самый закон записал. Особо сомневающимся в факте взаимного тяготения масс предлагалось для доказательства спрыгнуть откуда-нибудь повыше и посмотреть, что будет.Позже, в институте, доказательство этого закона тоже как-то проскакивали на большой скорости, без ненужных подробностей.И, как оказалось, далеко не случайно.
Квантовая теория приводит в трепет даже многих физиков. Ох, как они горды тем, что всякие там доморощенные опровергатели основ суются со своими умничаниями в самые разные области – и в классическую механику, и в электродинамику, и, в особенности, в теорию относительности – но никто не покушается на квантовую теорию! «Даже этим олухам ясно, - веселятся академики, - что без квантовой теории люди бы до сих пор жили в пещерах и бегали с каменными топорами!» Без квантовой теории, мол, не было бы лазеров – а без лазеров, девочки и мальчики, не было бы у вас таких балдёжных дискотек! Без квантовой теории, мол, не было бы понимания того, как движутся электроны в металлах и полупроводниках – а без этого понимания, девочки и мальчики, не было бы у вас ни компьютеров, ни мобильных телефончиков! Откуда девочкам и мальчикам знать, что всё это – шутки? Лазеры, компьютеры, мобильные телефончики – своим появлением они вовсе не обязаны квантовой теории.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.