Догонялки с теплотой - [15]
Этот на редкость диалектический подход кажется совершенно непотопляемым. Одного лишь боятся теоретики: чтобы кто-нибудь не догадался, что этот их подход совершенно бессилен объяснить, отчего одно и то же вещество может либо гореть, либо взрываться, либо детонировать. Ну, положим, взрыв – это тоже горение, только при особо благоприятных условиях: взрыв – это цепная реакция горения, когда большинство цепей реакции не обрывается, а развивается. При взрыве, как показывают эксперименты, по гремучей смеси проходит ударная волна, которую гонит перед собой зона химической реакции. Детонация же внешне проявляется как гораздо более быстрый взрыв – но полагают, что качественных отличий между ними нет. Детонационную волну рассматривают как «комплекс, состоящий из ударной волны и зоны химической реакции, тепловыделение в которой поддерживает ударный фронт». Просто дух захватывает: в конденсированном взрывчатом веществе, при скорости ударного фронта в 2 км/с, скорость детонационного фронта может составлять 9 км/с и более – причём, в одном и том же образце регистрируется динамика сразу обоих этих фронтов, чем наглядно демонстрируется их различная природа. А нам до сих пор втюривают, что при горении, взрыве и детонации происходит одна и та же химическая реакция. Дяденьки, возьмите в левую руку маленький брикетик тротила. Пламенем спички его можно поджечь – и он будет безобидно гореть. А от малейшей искры он сдетонирует – мало не покажется. И это – одна и та же химическая реакция? А разница в их протекании чем обусловлена? Тем, что, в случае детонации, условия для реакции ещё благоприятнее, чем при взрыве – т.е. эти условия не просто благоприятные, а охренительно благоприятные? Но, ведь, ёлы-палы, брикетик-то один и тот же! В чём конкретно разница по благоприятности, дающая либо горение, либо детонацию? Да вот в чём эта разница: в грамотно подобранных коэффициентах в уравнениях – чтобы скорость фронта реакции составляла в первом случае миллиметры в секунду, а во втором – в миллион раз больше. Главное – чтобы теория согласовывалась с опытом!
Говорит эта теория: детонационная волна быстрее ударной, потому что в зоне химической реакции, соответственно, температура и давление выше. Ужас… Контуженые эти теоретики, что ли: какая там может быть температура вообще? Температура имеет смысл для равновесных состояний – а взрывные процессы протекают так быстро, что о тепловом равновесии не может быть и речи. Речь может быть вот о чём: при увеличении температуры и давления в приготовленном образце взрывчатого вещества, скорость ударного фронта в нём заметно увеличивается. Но скорость детонационного фронта остаётся постоянной, будучи характеристической величиной для того или иного взрывчатого вещества! Но и эти факты не помогли бравым Зельдовичам-Станюковичам сообразить, что ударный и детонационный фронты – это принципиально разные феномены. Кстати, что они называют детонационным фронтом? Это же шутка: детонация вовсе не проходит последовательно по всему объёму образца взрывчатого вещества, начиная от места инициирования. Детонация может начинаться на некотором расстоянии от места инициирования, и может развиваться не только в прямом направлении, но и в обратном. Скоростная киносъёмка показывает, что очаги детонации «появляются совершенно произвольно во времени и в пространстве»!
Но нашим бравым теоретикам – хоть кол на голове теши! Зациклились они на «химической реакции и выделяющемся при ней тепле» - без этой мантры они уже шагу ступить не могут. А ведь проводились изящные опыты со специально синтезированным взрывчатым веществом – в молекулы которого, помимо нитрогрупп, входили группы СО и СО>2 с углеродными и кислородными изотопными метками. Эти группы СО и СО>2 являлись готовыми продуктами «реакции самоокисления» - в результате которой, изотопные метки так и остались бы в них. Но для всех продуктов детонации, содержавших углерод и кислород, процентные содержания изотопных меток оказались одинаковы и равны их процентным содержаниям в исходном взрывчатом веществе. Был сделан логичный вывод о том, что «все связи в исходной молекуле оказываются разорваны при детонации», и что продукты детонации должны получаться в результате произвольной рекомбинации свободных атомов. Вон оно как бабахает-то! Полный развал на атомы и последующая свободная рекомбинация – это, мягко говоря, не совсем химическая реакция, правда? Вот нам подсказывают: детонация – это цепной процесс развала специфических молекул, причём новые развалы вызываются резонансными электронами, вылетевшими при предыдущих развалах. Сразу многое становится на свои места. Сразу возникло подозрение, что «детонационный фронт» должен сопровождаться импульсом отрицательного электричества – и это подтвердилось на опыте! Другое подозрение – что на детонацию должны влиять электрические и магнитные поля – ещё ждёт своих исследователей.
Ну, вот – не забыли мы ни про паровые машины, ни про горение, ни про детонацию. Надо сказать про ещё один источник тепла – в ядерных установках. Хорошо известно, что используемая там энергия деления тяжёлых ядер – это кинетическая энергия их осколков. Но каково её происхождение? Тут ядерщики, сияя от гордости, заявят: в кинетическую энергию осколков превращается разность дефектов масс у исходного ядра и осколков! От умиления прослезиться можно – если не знать, что у ядерщиков до сих пор нет модели, объясняющей хотя бы основные свойства ядер (см. «Фокусы-покусы квантовой теории»), и что ядерщики до сих пор не понимают, с чего получается этот самый дефект масс. Да чего греха таить, ядерщики не понимают и того, почему, собственно, тяжёлые ядра делятся: это потому, мол, что им делиться энергетически выгодно. Дяденьки, если тяжёлым ядрам было бы делиться выгодно – разве они моментально не поделились бы к чёртовой матери? Чегой-то они не делятся, а терпеливо ждут, когда прилетит тепловой нейтрончик. Вот тут-то – глазом моргнуть не успеешь: вместо ядра уже разлетающиеся осколки. Опять же: почему нейтрончик – именно тепловой? Почему нейтрон с энергией в несколько МэВ только возбуждает ядро, а нейтрон с энергией в несколько сотых эВ – вызывает немедленный развал ядра? Зубодробительные удары ядро переносит играючи, а от щекотки – загибается? Молчит наука… Вы же, дяденьки, понятия не имеете о том, как работает атомная бомба. Когда вы, наконец, скажете нам правду: кто растолковал вам, как эту бомбу сделать?
Канонизированная версия появления теории относительности (ТО), вкратце, такова. На рубеже XIX-XX веков был в оптике движущихся тел жуткий кризис. Физики захлебнулись в противоречиях, сидели в прострации и не знали, что делать дальше. Тут-то Эйнштейн и вывел этих недотёп на путь истинный. Все-то противоречия его ТО устранила, все-то эксперименты она объяснила, да ещё кучу предсказаний сделала – и все они великолепно подтвердились на опыте! Ну, красная цена канонизированным версиям хорошо известна: «Боже мой, что скажет история?» - «Да не волнуйтесь, история солжёт, как всегда!»И точно! Никаких противоречий ТО не устранила: она их послала куда подальше, а от себя новых насадила, ласково называя их парадоксами.
Вся история физики, от начала времен и до наших дней, изложенная честно и беспристрастно. Естественно, как честный человек, описывая современное состояние предмета, автор приходит к вполне очевидному для наших современников (даже совершенно не знающих физики!) выводу:"Когда я слышу, что Галилей заложил основы научного физического метода, я понимаю: мелко же плавал этот Галилей! Куда ему до титанов, которые заложили и перезаложили всю физику с потрохами. Так оно всегда и выходит, когда любителей вытесняют профессионалы.".
Помните, как в школе мы все замирали словно кролики перед удавом перед законом про "всемирное тяготение" всех масс в мире друг к другу. Нам рисовали на доске двухэтажную формулу, а вместо её доказательства рассказывали анекдот про яблоко, поразившее в темечко спящего автора, который проснулся от удара и тут же этот самый закон записал. Особо сомневающимся в факте взаимного тяготения масс предлагалось для доказательства спрыгнуть откуда-нибудь повыше и посмотреть, что будет.Позже, в институте, доказательство этого закона тоже как-то проскакивали на большой скорости, без ненужных подробностей.И, как оказалось, далеко не случайно.
Квантовая теория приводит в трепет даже многих физиков. Ох, как они горды тем, что всякие там доморощенные опровергатели основ суются со своими умничаниями в самые разные области – и в классическую механику, и в электродинамику, и, в особенности, в теорию относительности – но никто не покушается на квантовую теорию! «Даже этим олухам ясно, - веселятся академики, - что без квантовой теории люди бы до сих пор жили в пещерах и бегали с каменными топорами!» Без квантовой теории, мол, не было бы лазеров – а без лазеров, девочки и мальчики, не было бы у вас таких балдёжных дискотек! Без квантовой теории, мол, не было бы понимания того, как движутся электроны в металлах и полупроводниках – а без этого понимания, девочки и мальчики, не было бы у вас ни компьютеров, ни мобильных телефончиков! Откуда девочкам и мальчикам знать, что всё это – шутки? Лазеры, компьютеры, мобильные телефончики – своим появлением они вовсе не обязаны квантовой теории.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.