Бирюльки и фитюльки всемирного тяготения

Бирюльки и фитюльки всемирного тяготения

Помните, как в школе мы все замирали словно кролики перед удавом перед законом про "всемирное тяготение" всех масс в мире друг к другу. Нам рисовали на доске двухэтажную формулу, а вместо её доказательства рассказывали анекдот про яблоко, поразившее в темечко спящего автора, который проснулся от удара и тут же этот самый закон записал. Особо сомневающимся в факте взаимного тяготения масс предлагалось для доказательства спрыгнуть откуда-нибудь повыше и посмотреть, что будет.

Позже, в институте, доказательство этого закона тоже как-то проскакивали на большой скорости, без ненужных подробностей.

И, как оказалось, далеко не случайно. Поскольку массы друг другу вовсе не притягиваются. А с тяготением всё и гораздо сложнее, и куда интереснее.

Но об этом лучше почитать в самой статье.

Жанр: Физика
Серии: -
Всего страниц: 20
ISBN: -
Год издания: Не установлен
Формат: Полный

Бирюльки и фитюльки всемирного тяготения читать онлайн бесплатно

Шрифт
Интервал

Идея о всемирном тяготении – это великая идея. За триста лет она очень неплохо прижилась в физике. Ух, как учёные любят такие идеи – с претензиями на вселенский охват явлений! Чем идея глобальнее, тем больше её психологическая привлекательность. Ведь глобальность идеи подсознательно ассоциируется с глобальностью мышления её сторонников. Усомниться в идее о всемирном тяготении означает – ни много, ни мало – усомниться в качестве традиционного физического мышления! Вот почему эта идея обладает мощным механизмом самосохранения, который обеспечивает иммунитет даже против вопиющих фактов, которые в эту идею не укладываются. Это – присказка, а сказка будет впереди.

Перед тем, как закон всемирного тяготения был открыт, у него была ещё предыстория. Понимаете, какое дело: наука строится только на фактах. И, поскольку никакой технической документации по сотворению физического мира не отыскалось, современная наука полагает, что этот дивный мир возник и устаканился сам собой. «До того, как что-нибудь было, - говорит она, - ничего не было. Ни тебе пространства, ни времени, ни тебе полей, ни частиц. Была только мерзость запустения и одна-одинёшенька сингулярность на этой мерзости – как бы вечная и как бы бесконечная. Была она себе, была, никого не трогала…» И вдруг случился с ней казус, который по-научному называется «первотолчок». С непривычки бабахнула сингулярность так, что из неё потекло и посыпалось всё сразу: и время, и пространство, и поля, и частицы. По мере того, как молодая и горячая Вселенная остывала на лету, расширяясь в запространственные дали, потихоньку-полегоньку утряслись сами собою физические законы, в том числе и закон всемирного тяготения. Вот теперь оставалось только открыть его…

Тик-так, тик-так!.. Долго ли, коротко ли, но – свершилось-таки! Причём, исторически сложилось так, что Ньютон сформулировал закон всемирного тяготения в том же самом труде – «Математических началах натуральной философии» - в котором, несколько выше, он сформулировал свои знаменитые три закона механики. Третий закон Ньютона гласит: «Действие равно противодействию», т.е. если тело А действует на тело В с некоторой силой, то и тело В действует на тело А с силой, такой же по величине и противоположной по направлению. Если считать, что третий закон Ньютона работает и для случая тяготения, то просто неизбежен вывод о том, что любые два кусочка вещества притягивают друг друга. Этот вывод не противоречил известным во времена Ньютона явлениям: движению планет вокруг Солнца, движению комет, движению, в первом приближении, Луны вокруг Земли, и, наконец, падению малых тел на Землю. Проанализировав эти явления, Ньютон нашёл математическое выражение, описывающее закон всемирного тяготения: сила взаимного притяжения любых двух малых кусочков вещества прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними. «Малыми» считаются такие кусочки, размеры которых много меньше расстояния между ними. Например, в масштабах Солнечной системы, Солнце и планеты можно считать такими «малыми кусочками». Если же рассматривается падение камешка на Землю, то, строго говоря, следует мысленно разбить Землю на малые кусочки и суммировать притяжение камешка к каждому из них.

Но не всё было так стройно и последовательно, как кажется на первый взгляд. Хорошо применять третий закон Ньютона, скажем, для случая столкновения двух тел: очевидно, что они ударяют друг по другу, приходя в физический контакт. Но тяготение-то действует на расстоянии! И возникает мучительный вопрос – каким же это образом тело А действует на далёкое тело В, которое, в свою очередь, из того же далёка отвечает взаимностью?

Те, кто ломали головы над этой проблемой, обычно приходили к мысли о том, что разнесённые в пространстве тела А и В притягивают друг друга не потому, что действуют друг на друга непосредственно, а потому, что работает некоторый посреднический механизм. Вот на что обратим внимание: каков бы ни был этот посредник, допущение о его существовании означает допущение нарушения третьего закона Ньютона. Смотрите: пусть тело А сдвинется в пространстве, так что изменится расстояние между ним и телом В. Соответствующие изменения сил, действующих на оба тела, происходили бы мгновенно при их непосредственном взаимодействии, но при наличии посредника это изменение должно происходить с некоторым запаздыванием. В течение того промежутка времени, пока не установились новые «правильные» значения сил, могут произойти разного рода пертурбации – вплоть до того, например, что тело В может быть уничтожено. Интересная возникнет ситуация: тела В уже нет, а прежняя сила на тело А всё ещё действует.

Впрочем, эта интересная ситуация не возникнет, если запаздывания ничтожны, т.е. скорость действия тяготения очень велика. Кстати, мало кто знает: в уравнениях небесной механики скорость действия тяготения тупо принимается бесконечной – и как раз такие уравнения прекрасно работают на астрономических масштабах, например, чудненько описывают движение планет вокруг Солнца! Но это всё-таки косвенное свидетельство. А известны ли какие-нибудь экспериментальные данные о скорости действия тяготения? Конечно, известны: этим вопросом занимался ещё Лаплас в XVII веке. Он сделал вывод о скорости действия тяготения, проанализировав известные на то время данные о движении Луны и планет. Идея заключалась вот в чём. Орбиты Луны и планет не являются круговыми: расстояния между Луной и Землёй, а также между планетами и Солнцем, непрерывно изменяются. Если соответствующие изменения сил тяготения происходили бы с запаздываниями, то орбиты эволюционировали бы. Но многовековые астрономические наблюдения свидетельствовали о том, что если даже такие эволюции орбит происходят, то их результаты ничтожны. Отсюда Лаплас получил нижнее ограничение на скорость действия тяготения: это нижнее ограничение оказалось больше скорости света в вакууме на 7 (семь) порядков. Ничего себе, правда?


Еще от автора О Х Деревенский
Фиговые листики теории относительности

Канонизированная версия появления теории относительности (ТО), вкратце, такова. На рубеже XIX-XX веков был в оптике движущихся тел жуткий кризис. Физики захлебнулись в противоречиях, сидели в прострации и не знали, что делать дальше. Тут-то Эйнштейн и вывел этих недотёп на путь истинный. Все-то противоречия его ТО устранила, все-то эксперименты она объяснила, да ещё кучу предсказаний сделала – и все они великолепно подтвердились на опыте! Ну, красная цена канонизированным версиям хорошо известна: «Боже мой, что скажет история?» - «Да не волнуйтесь, история солжёт, как всегда!»И точно! Никаких противоречий ТО не устранила: она их послала куда подальше, а от себя новых насадила, ласково называя их парадоксами.


История физики, изложенная курам на смех

Вся история физики, от начала времен и до наших дней, изложенная честно и беспристрастно. Естественно, как честный человек, описывая современное состояние предмета, автор приходит к вполне очевидному для наших современников (даже совершенно не знающих физики!) выводу:"Когда я слышу, что Галилей заложил основы научного физического метода, я понимаю: мелко же плавал этот Галилей! Куда ему до титанов, которые заложили и перезаложили всю физику с потрохами. Так оно всегда и выходит, когда любителей вытесняют профессионалы.".


Догонялки с теплотой

В нашей науке достигнут максимум её независимости не только от общества, но и от здравого смысла. За наш счет ученые занимаются тем, чем сами хотят. Они сами отчитываются перед собой и присваивают друг другу оплачиваемые нами впоследствии звания. Они сейчас борются за эксклюзивное право исключительно самостоятельно определять, что есть наука, а что нет. Более того, они желают даже на государственном уровне запрещать другим людям заниматься (даже за собственный счет) тем, что тем интересно, но что противоречит текущим научным фантазиям (пардон, "фундаментальным теориям").Если в обычной жизни обнаруживается чья-то ошибка, её просто исправляют.


Фокусы-покусы квантовой теории

Квантовая теория приводит в трепет даже многих физиков. Ох, как они горды тем, что всякие там доморощенные опровергатели основ суются со своими умничаниями в самые разные области – и в классическую механику, и в электродинамику, и, в особенности, в теорию относительности – но никто не покушается на квантовую теорию! «Даже этим олухам ясно, - веселятся академики, - что без квантовой теории люди бы до сих пор жили в пещерах и бегали с каменными топорами!» Без квантовой теории, мол, не было бы лазеров – а без лазеров, девочки и мальчики, не было бы у вас таких балдёжных дискотек! Без квантовой теории, мол, не было бы понимания того, как движутся электроны в металлах и полупроводниках – а без этого понимания, девочки и мальчики, не было бы у вас ни компьютеров, ни мобильных телефончиков!  Откуда девочкам и мальчикам знать, что всё это – шутки? Лазеры, компьютеры, мобильные телефончики – своим появлением они вовсе не обязаны квантовой теории.


Рекомендуем почитать
День сурка И.А.

Небольшой рассказ — фантасмагория, тем более абсурдная, чем более обыденным воспринимается все происходящее действующими лицами. Абсурдность действия нарастает от вполне себе нормального события (человек решил покончить с собой) до полного маразма, и в то же время, по сути, не происходит ничего, что выходило бы за рамки нашей современной обыденной реальности (ну, разве что образ ее чуть гипертрофирован).В тексте присутствует ненормативная лексика.


Цветы для Сони

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Выборы

В результате теракта, компьютер центральной избирательной комиссии Израиля был заражен вирусом. При попытке восстановить систему программистами была допущена ошибка, и в результате в виртуальной реальности компьютера сложилась весьма необычная ситуация. Не народ избирал партии в парламент, а лидеры партий выбирали народ (а, следовательно, страну с ее историей, геологией, будущим и даже географией), которым они согласились бы управлять.


Все законы Вселенной

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Движение молекул

В этой книжке рассказывается о главном, неотъемлемом свойстве невидимых частиц вещества — об их движении и о связанных с этим свойствах тел.


Физика повседневности. От мыльных пузырей до квантовых технологий

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни.


Биография атома

Трудно найти в наше время человека, в лексиконе которого не было бы слов «атом», «атомная энергия», «атомная электростанция», так же как нет человека, который никогда не пользовался бы словами «машина», «электричество» или «пар». Короткое слово «атом» прочно вошло в языки народов всех стран мира. И это понятно. Ведь со словом «атом» связаны величайшие достижения науки нашего времени. Но с этим словом, к сожалению, связаны и величайшие бедствия человечества. Кто не знает трагедии больших японских городов — Хиросимы и Нагасаки? А ведь именно тогда большинство людей впервые услышало новые слова «атомная энергия».


E=mc2. Биография самого знаменитого уравнения мира

В 1905 году, выведя свое знаменитое уравнение Е=mc2, Альберт Эйнштейн подарил миру мощный источник энергии и открыл новые пути к познанию Вселенной. И теперь, более ста лет спустя, блестящий популяризатор науки Дэвид Боданис увлекательно и просто рассказывает об этом великом открытии. Герои его захватывающей, как детектив, книги — выдающиеся физики, среди которых Фарадей, Резерфорд, Ферми, Оппенгеймер, Гейзенберг и конечно же гениальный Эйнштейн.


Бегство от удивлений

Книга рассказывает о рождении и развитии механики как науки, искавшей и ищущей ответы на самые простые и глубокие вопросы об устройстве природы.


Бег за бесконечностью

В книге рассказывается о современных представлениях об одной из самых быстроразвивающихся фундаментальных наук — физике элементарных частиц. Основное внимание уделено описанию сильновзаимодействующих частиц — адронов их поведению в различных реакциях при высоких энергиях.