Дискретная математика без формул - [19]
А из программирования уже, обычно, так просто не возвращаются…
Лекция 13. СЛОЖНОСТЬ ВЫЧИСЛЕНИЙ
Мало того, что есть алгоритмически неразрешимые задачи и их бесконечно больше, чем задач алгоритмически разрешимых. С практической точки зрения нам не легче, если решение разрешимой задачи мы сможем получим через миллион лет. Раньше не закончить расчеты… Это трудно-решаемые задачи. Для нас (простых смертных) такие задачи не отличаются от задач алгоритмически неразрешимых.
А ситуация с такими задачами еще более туманная, чем с алгоритмической разрешимостью. Пока единственный, фактически, «железный» аргумент нашей беспомощности, что задача относится к трудно-решаемым, что никто пока не нашел для нее легкого решения! Даже американские политики.
Ненормальность такой ситуации усугубится, если учесть, что теоретики рассматривают только конечные дискретные задачи (задачи либо на поиск оптимума, либо распознавания [да-нет]), любая из которых (теоретически) может быть решена хотя бы (за неимением лучшего) простым перебором. Но от этого не легче, если вспомнить легенду об изобретателе шахмат, который попросил в награду за первую клеточку шахматной доски одно зернышко, за вторую два… за 64-ю клеточку – 2 в 64-ой степени зернышек. Что превышает зерновые ресурсы Земного шара.
Одна из книг по сложности вычислений начиналась с цитаты из украинского философа Георгия Сковороды:" Спасибо тебе Господи, что ты создал все нужное нетрудным, а все трудное – ненужным." Но кажется, что здесь более точной будет другая мысль из Сковороды, а именно, эпитафия на его могиле: «Мир ловил меня, но не поймал»… И еще одна мысль более конкретная мысль уже от современных математиков: «Сложность становится проблемой века».
Из-за огромного количества несущественных особенностей различных способов (методов, парадигм) вычисления признаки, которые следовало бы учитывать при определении сложности вычислений слишком многочисленны и противоречивы. Но в конечном счете большинство сходится к тому, что все можно свести к времени (числу элементарных шагов) вычисления и объему памяти. Более того, многие так и видят при этом в качестве наилучших моделей – машины Тьюринга.
Проблему быстро свели к двум словам и их сочетанию.
Эти слова Polinomial – полиномиальный и Nondeterministic – недетерминированный.
Возьмем большой мешок камней и решим задачу поиска самого большого камня. Будем вынимать поочередно камни, сравнивая с самым большим на данный момент. Исчерпав мешок мы оставим в руках самый большой камень. Если число камней мы увеличим в 2 раза, то сложность решения задачи тоже увеличится (примерно) в два раза. Если возьмем мешок с "n" то и трудность решения будет пропорциональна "n". Говорят, что такую задачу можно решить за полиномиальное время. Если вы решаете задачу нахождения самого большого ребра в полном нагруженном графе, то это тоже задача полиномиальной сложности, исходя из формулы для полного графа, увеличивающая сложность с ростом числа вершин по закону роста числа ребер, пропорциональному «n квадрат».
Однако, есть задачки (для тех же графов), для которых не найдено простых (полиномиальных) решений. Вторым из классических примеров таких задач (первый оставим для финала) служит задача о коммивояжере: Каков минимальный цикл в нагруженном графе, что при обходе его в каждую вершину заходим однажды. Для этой задачи есть только «трудные решения», сложность которых растет по экспоненте (как число зернышек на шахматной доске).
Но проверить решение такой задачи можно за полиномиальное время. Вся сложность в том, чтобы знать «траекторию решения». А вот снять проблему выбора правильной траектории позволяет недетерминированная машина Тьюринга, которую можно представить как сколь угодно большое число (обычных детерминированных) машин, каждая из которых делает попытку добраться до решения задачи по одной из возможных траекторий. У кого из читателей фантазия при этом отказывает, могут просто представить себе бога (говорят – «оракула»), который подсказывает правильный путь, чтобы не гонять кучу машин неведомыми тропами. Конечный эффект тот же.
Таким образом, множество труднорешаемых задач (NP задач) относится к задачам, решаемым недетерминированной машиной за полиномиальное время. А проблему сложности вычислений математики выразили в виде формулы, которую все-таки приведу из-за ее краткости и «нетрудности» печати:
P = NP?
Интересно, говорят этой формулой математики, совпадают ли множество задач, решаемых за полиномиальное время и множество NP задач? Может просто толку пока не хватает найти простые решения…
Как бы там ни было, а задачи, для которых простые (полиномиальные) решения пока не найдены, существуют. И чем дальше, тем больше математики упорствуют в этой (недоказанной) уверенности. Более того, они коллекционируют типовые труднорешаемые задачи, которых уже набралось не менее тысячи. Более того, утверждают, что одни труднорешаемые задачи сводятся к другим труднорешаемым задачам. Поэтому даже используется для таких задач термин "NP–полные" задачи. И делается радикальное заявление: если хоть для одной
Эта книга – о «выдающихся» ворах и грабителях. О тех, кто прославил свое имя на крови либо благодаря хитроумным комбинациям и отчаянной наглости. Для них мало значила человеческая жизнь, на первом месте стоял азарт и жажда наживы.Как они становились преступниками и как их ловили? Что привело их к воровству и к чему привело воровство? Как наказывает грабителей суд человеческий и как карает их суд Божий?..Станьте соучастником захватывающих авантюр, где сплелось все: воровская любовь и любовь к воровству; страшное, смешное, глупое и грустное; преступление и наказание…
Эта книга – о крупнейших российских предпринимателях, в прошлом сильных мира сего, ставших изгоями в своем отечестве. Одни из них вынуждены скрываться на чужбине, другие отбывают или уже отбыли срок в местах заключения за преступления реальные или мнимые, третьих нет в живых. Эти люди – первопроходцы российского бизнеса, люди неоднозначные, но, безусловно, яркие, сильные и умные. Но, по сути, сегодня им нет места в нашем обществе.Почему и как это случилось – расскажет наша книга. Впечатляющие истории, собранные здесь, – не огульные обвинения или нападки на предпринимателей, а рассказ о живых людях и сложных, неоднозначных, порой печальных и постыдных сторонах и свойствах российского бизнеса, судопроизводства и власти.Книга для широкого круга читателей.
В этой книге собраны опубликованные в разное время в журнале «Коммерсантъ. Деньги» в рубрике «Story» истории жизни тех, кто в разные времена повелевал умами, кошельками, душами, да и жизнями тысяч, а то и миллионов людей. Наши герои жили в разные эпохи, их свершения можно оценивать по-разному - кто-то оставил после себя выдающиеся произведения искусства или россыпь новых технологий, кто-то - основополагающую теорию или глобальную идею, а кто-то - развалины мифа или потрясающую по размаху, эффективности и жестокости преступную империю.
Третья книга - сборник статей из рубрики STORY журнала «Коммерсантъ ДЕНЬГИ» - в отличие от первых двух обращается не к судьбам отдельных людей или компаний, а к событиям глобального масштаба, раз и навсегда изменившим уклад, традиции, сами основы существования целых обществ, стран и континентов.Неудивительно, что весьма драматичную роль во всех этих историях играли деньги, причем порой самым неожиданным образом. Кто на самом деле разбогател на золотой лихорадке? Чьим экономическим интересам угрожал Павел I? Как быстро можно уничтожить весь Интернет? Ответы на эти и другие вопросы вы найдете в книге «знаковые моменты».Повседневная жизнь обычно проплывает перед нашими глазами неторопливой чередой малозначимых событий и почти бессмысленной суеты.
Продолжение бизнес-бестселлеров «Бизнес есть бизнес» и «Бизнес есть бизнес 2», победителей премии «Бизнес-книга года» журнала «Свой бизнес» 2006 года. Эта книга о тех, кто всегда понимался с колен, какой бы сильный удар ни пришлось им получить, о тех, кто всегда готов начинать свое дело с нуля снова и снова, не умеет сдаваться, ломаться под давлением обстоятельств. Герои книги уверены, что свой шанс преуспеть есть практически у каждого. Что для этого необходимо? Да ничего нового - вера в себя, упорный труд и толика удачи.
Эта книга – о самых масштабных или просто жутких катастрофах, когда-либо обрушивавшихся на человечество.Эпидемии и стихийные бедствия, войны и аварии с завидной регулярностью разрушали и разрушают, убивали и убивают, ставя под угрозу само существование человечества или, по крайней мере, значительной его части.Что удивительно, самые разнообразные беды и напасти обнаруживают пугающе сходные характеристики… Как итог, пять глав, которые авторы объединили в книгу, по сути, повествуют о фактическом противостоянии человека и окружающего мира.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.