Дискретная математика без формул - [14]
И еще высказывание «Собакам и кошкам вход воспрещен».
Конструкция
"ДЛЯ ВСЕХ иксов справедливо: ЕСЛИ икс – собака И икс – кошка, ТО иксу вход запрещен"
Ясно что таких иксов, которые бы были одновременно собакой и кошкой не существует! Как, впрочем, и таких игреков. Поэтому
" ДЛЯ ВСЕХ иксов справедливо: ЕСЛИ икс – собака ИЛИ икс – кошка, ТО иксу вход запрещен"
И список таких фокусов-выкрутасов можно продолжать долго. До бесконечности. Но, главное, во-время остановиться и понять, что если бы даже придумать другую логику, в которой не было бы этих проблем, то получится логика, в которой будут другие проблемы, скорее всего существенно большие. А мы даже не трогали таких заморочек, присущих естественным языкам, как синонимы, омонимы, метафоры, гиперболы и т.д и т.п. Одни идиомы, кто знает, чего стоят!… Так что «братания» языка логики с естественным языком не предвидится и в самой отдаленной перспективе, даже когда планета Земля начнет остывать…
Лекция 10. АКСИОМАТИЧЕСКИЕ ТЕОРИИ
Если алгебра логики и дает образец логического мышления, то уж очень специфический. Строгие логические рассуждения и близко от такого образца не лежали. Создавать (абсолютно) строгие логические (то есть абсолютно логичные) системы позволяет дедуктивный подход. Не путать с «дедуктивным методом» Шерлока Холмса. У Холмса, или скорее у Конан-Дойля, явно были проблемы с логикой, коль скоро он путал дедукцию с индукцией…
ДЕДУКТИВНЫЙ подход, называемый еще АКСИОМАТИЧЕСКИМ, это подход от общего к частному. От аксиом (постулатов) к теоремам (следствиям). Аксиоматическая теория строго задана, если строго сформулирован (задан) язык теории, ее аксиомы и правила вывода. Стоит хотя бы в одной из этих трех составляющих «дать слабину» и строгой теории как не бывало!
Знаменитая (одна из первых) аксиоматическая теория – геометрия Эвклида худо-бедно обеспечила строгость только в одном компоненте – в постулатах. Но язык, на котором проводятся доказательства в геометрии даже через тысячелетия, как и строгость самих доказательств не выдерживают критики. Это не более, чем неоднозначный метафорическо-аллегорический язык и правдоподобные рассуждения. Потому-то нередки случаи, когда опровергаются «доказанные» теоремы. Собственно, почти вся математика, за исключением сравнительно малюсенького раздела из логики аксиоматических систем, покоится (лучше звучит – зиждется) на правдоподобных рассуждениях и порядочности доказывающих.
Так что образцовая безупречно строгая теория задается на языке предикатных формул. (Мы здесь зареклись использовать формулы, поэтому остается полагаться на собственную честность).
Аксиомами об'являются некоторые из формул. В жизни мы также об'являем законами (аксиомами) не все фразы, которые можно ввернуть в той или иной ситуации, а лишь некоторые, которые мы решили считать таковыми… Законы (Аксиомы) это вопрос веры, а иногда целесообразности. Они недоказуемы! Если доказуемы, то это уже теоремы!
Существование Бога недоказуемо! Иначе это была бы теорема. А из каких, простите, более первичных понятий такую «теорему» выводить прикажете?!…
Закон всемирного тяготения недоказуем. Мы просто ему поверили, поскольку надоело проводить эксперименты по падению тел, в ожидании, когда с ними произойдет что-нибудь оригинальное.
Выводы в теории тоже следует формализовать, поскольку каждому в жизни встречались люди, которые «убедительно» доказывали какую-нибудь чушь.
Кстати, самое знаменитое правило вывода в математической логике (modus ponens) удручает своей очевидностью и даже примитивностью. Проиллюстрировать его можно так: Пусть в системе есть утверждения
"ЕСЛИ хорошая погода, ТО мы гуляем" и
«Хорошая погода» тогда в соответствии с modus ponens выводимо утверждение
«Мы гуляем»
При всей своей примитивности это правило вывода имеет решающее достоинство. Оно очевидно для всех. Очевиднее не бывает! А если в системе есть еще и утверждение:
"ЕСЛИ мы гуляем, ТО обязательно заблудимся" то с учетом ранее выведенного
«Мы гуляем» получим
«Обязательно заблудимся»
Видите, как далеко можно зайти маленькими очевидными шажками! Существует много и других правил вывода, но все имеют обязательное свойство – очевидность. Эта очевидность позволяет далее использовать эти правила абсолютно формально. То есть результат вычисляется. Такие символьные вычисления называются ИСЧИСЛЕНИЯМИ.
Есть еще один подход к аксиоматике, когда основной упор делается именно на правила вывода. Такие системы (почему-то) называются системами естественного вывода, намекая на то, что в них собраны базовые естественные правила логических рассуждений.
Логики резвились меж собой до тех пор, пока не был сформулирован подход к созданию аксиоматических систем под названием ПРИНЦИП (МЕТОД) РЕЗОЛЮЦИ. Он очень способствовал продвижению логики в широкие народные массы.
С одной стороны, активизировались работы по использованию компьютеров для реализации логического вывода и работы по искусственному интеллекту в частности. А с другой стороны, на этой основе был создан язык ПРОЛОГ.
Это совсем другое программирование, нежели традиционное процедурное. Это даже не программирование в обычном смысле слова, коль скоро здесь программист не пишет алгоритм решения задачи. Он описывает логические зависимости «мира», в котором существует задача. На основе описанной логики «мира» система (машина) сама создает алгоритм в процессе поиска решения!
Эта книга – о «выдающихся» ворах и грабителях. О тех, кто прославил свое имя на крови либо благодаря хитроумным комбинациям и отчаянной наглости. Для них мало значила человеческая жизнь, на первом месте стоял азарт и жажда наживы.Как они становились преступниками и как их ловили? Что привело их к воровству и к чему привело воровство? Как наказывает грабителей суд человеческий и как карает их суд Божий?..Станьте соучастником захватывающих авантюр, где сплелось все: воровская любовь и любовь к воровству; страшное, смешное, глупое и грустное; преступление и наказание…
Эта книга – о крупнейших российских предпринимателях, в прошлом сильных мира сего, ставших изгоями в своем отечестве. Одни из них вынуждены скрываться на чужбине, другие отбывают или уже отбыли срок в местах заключения за преступления реальные или мнимые, третьих нет в живых. Эти люди – первопроходцы российского бизнеса, люди неоднозначные, но, безусловно, яркие, сильные и умные. Но, по сути, сегодня им нет места в нашем обществе.Почему и как это случилось – расскажет наша книга. Впечатляющие истории, собранные здесь, – не огульные обвинения или нападки на предпринимателей, а рассказ о живых людях и сложных, неоднозначных, порой печальных и постыдных сторонах и свойствах российского бизнеса, судопроизводства и власти.Книга для широкого круга читателей.
В этой книге собраны опубликованные в разное время в журнале «Коммерсантъ. Деньги» в рубрике «Story» истории жизни тех, кто в разные времена повелевал умами, кошельками, душами, да и жизнями тысяч, а то и миллионов людей. Наши герои жили в разные эпохи, их свершения можно оценивать по-разному - кто-то оставил после себя выдающиеся произведения искусства или россыпь новых технологий, кто-то - основополагающую теорию или глобальную идею, а кто-то - развалины мифа или потрясающую по размаху, эффективности и жестокости преступную империю.
Третья книга - сборник статей из рубрики STORY журнала «Коммерсантъ ДЕНЬГИ» - в отличие от первых двух обращается не к судьбам отдельных людей или компаний, а к событиям глобального масштаба, раз и навсегда изменившим уклад, традиции, сами основы существования целых обществ, стран и континентов.Неудивительно, что весьма драматичную роль во всех этих историях играли деньги, причем порой самым неожиданным образом. Кто на самом деле разбогател на золотой лихорадке? Чьим экономическим интересам угрожал Павел I? Как быстро можно уничтожить весь Интернет? Ответы на эти и другие вопросы вы найдете в книге «знаковые моменты».Повседневная жизнь обычно проплывает перед нашими глазами неторопливой чередой малозначимых событий и почти бессмысленной суеты.
Продолжение бизнес-бестселлеров «Бизнес есть бизнес» и «Бизнес есть бизнес 2», победителей премии «Бизнес-книга года» журнала «Свой бизнес» 2006 года. Эта книга о тех, кто всегда понимался с колен, какой бы сильный удар ни пришлось им получить, о тех, кто всегда готов начинать свое дело с нуля снова и снова, не умеет сдаваться, ломаться под давлением обстоятельств. Герои книги уверены, что свой шанс преуспеть есть практически у каждого. Что для этого необходимо? Да ничего нового - вера в себя, упорный труд и толика удачи.
Эта книга – о самых масштабных или просто жутких катастрофах, когда-либо обрушивавшихся на человечество.Эпидемии и стихийные бедствия, войны и аварии с завидной регулярностью разрушали и разрушают, убивали и убивают, ставя под угрозу само существование человечества или, по крайней мере, значительной его части.Что удивительно, самые разнообразные беды и напасти обнаруживают пугающе сходные характеристики… Как итог, пять глав, которые авторы объединили в книгу, по сути, повествуют о фактическом противостоянии человека и окружающего мира.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.