Дилемма заключенного и доминантные стратегии. Теория игр - [41]

Шрифт
Интервал

Однако решение (1; 5,5; 5,5), которое кажется наиболее вероятным, нестабильно, так как компания А, не вступившая в альянс, может сделать предложение, например, компании Б, и обе получат выгоду, например (5, 6, 1). Теперь может вмешаться компания Б, которая предложит компании А уменьшить ее платеж в рамках альянса. С новым предложением также может выступить компания В. Это может происходить бесконечно. Сложно найти какое-то справедливое распределение, которое можно было бы считать решением игры.

Анализ игры для n игроков, проведенный фон Нейманом и Моргенштерном, показывает, что единственного оптимального решения не существует. Однако из анализа видно, что не всякое распределение может являться частью решения, поэтому нужно определить множество распределений, которые составят решение игры.

Для этого необходимо ввести понятие доминирования. Предполагается, что в описываемой игре за каждым предложением образовать альянс и разделить выигрыш следует новое предложение, причем новое распределение платежей будет не произвольным, а более оптимальным, чем предыдущее. Это означает, что должно присутствовать множество игроков, которые смогут сформировать новую коалицию, и соответствующее распределение платежей, при котором игроки получат строго большую выгоду, чем в прошлой коалиции.

Определив нужные понятия, мы можем сформулировать требования к множеству распределений, составляющих решение. Таких условий два.

1. Ни над каким распределением платежей, являющимся частью решения, не может доминировать другое распределение, которое также является частью этого решения.

2. Над любым распределением, которое не является частью решения, должно доминировать распределение, являющееся частью решения.

Фон Нейман и Моргенштерн считают, что при этих условиях предложенное решение, во-первых, не содержит внутренних противоречий, во-вторых, соответствует социально приемлемому поведению. Описанный метод можно применять с некоторыми ограничениями: так, игроки в любой момент времени должны одновременно и свободно обмениваться информацией.

Кооперативные игры, альянсы и распределения

Продолжим рассматривать игры для n игроков и проанализируем более сложные задачи. Предполагается, что игроки могут общаться между собой и заключать соглашения до начала игры. Как и раньше, наша цель — определить возможные коалиции и понять, при каких условиях достигается такое распределение выгоды, при котором все участники удовлетворены и хотят остаться в коалиции.

Пример 1

Три предпринимателя, Анна (А), Борис (Б) и Василий (В), заключили удачную сделку, и им нужно распределить полученную прибыль — 200000 евро. Они решают разделить деньги простым большинством: каждая персона имеет один голос, никаких других ограничений не накладывается. Существует четыре возможных коалиции, которые могут получить большинство: АБВ, АБ, АВ и БВ. Однако внутри каждой коалиции прибыль может быть распределена множеством способов.

Анна предлагает разделить деньги так: А = 68 000 евро, Б = 66 000 евро, В = 66 000 евро. Борис предлагает по-другому: А = 60 000 евро, Б = 70 000 евро, В = 70 000 евро. Этот вариант больше устраивает и Бориса, и Василия, который предлагает третий вариант: А = 70 000 евро, Б = 0 и В = 130000 евро. Этот вариант выгоднее не только для Василия, но и для Анны. Как и в примере из прошлого раздела, игроки могут выдвигать новые предложения снова и снова, и непохоже, чтобы существовала коалиция, выгодная для всех троих. Точки равновесия не существует, поскольку для любого предложения может последовать новое, которое будет более выгодным для каждого игрока в новой коалиции.

В кооперативных играх решением называется альянс и соответствующее распределение платежей, которые будут стабильны, то есть будут гарантировать согласие всех членов коалиции.

Пример 2

Допустим, что в прошлом примере предприниматели решили разделить прибыль согласно сделанным вложениям. Таким образом, Анна имеет 5 голосов, Борис — 3, Василий — 1 голос. Теперь большинство могут получить следующие коалиции: АБВ, АБ, АВ, А.

Анна имеет большинство, поэтому она может присвоить все деньги себе: А = 200000 евро, Б = 0 и В = 0. Распределение будет несправедливым, но стабильным. Анна согласна с таким решением, а образовать альянс без нее невозможно. Следовательно, приведенное решение удовлетворяет всем необходимым условиям, которые мы определили выше.

В подобных играх ценой игры называется платеж, который гарантирован каждому игроку, если тот будет действовать рационально, и не зависит от решений остальных участников. В примере 1 никому из них не гарантирована какая-либо сумма. Следовательно, ценой игры будет А = 0, Б = 0 и В = 0. Напротив, во втором примере ценой игры будет А = 200 000, Б = 0 и В = 0.

Пример 3

Усложним ситуацию еще больше, чтобы сделать ее более реальной. По результатам выборов 81 кресло в парламенте было распределено между пятью партиями следующим образом: А = 33, Б = 24, В = 15, Г = 6, Д = 3. Ни одна из партий не имеет абсолютного большинства (41 кресло), и для формирования правительства необходимо образовать коалицию. Эта коалиция займется распределением бюджетов и установит нужные обязанности. Партии имеют схожую идеологию, и предполагается, что мера ответственности определяется подконтрольным бюджетом. Кроме того, предполагается, что никто не будет нарушать процедуру голосования.


Рекомендуем почитать
Популярная физика. От архимедова рычага до квантовой механики

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.


Отпечатки жизни. 25 шагов эволюции и вся история планеты

Автор множества бестселлеров палеонтолог Дональд Протеро превратил научное описание двадцати пяти знаменитых прекрасно сохранившихся окаменелостей в увлекательную историю развития жизни на Земле. Двадцать пять окаменелостей, о которых идет речь в этой книге, демонстрируют жизнь во всем эволюционном великолепии, показывая, как один вид превращается в другой. Мы видим все многообразие вымерших растений и животных — от микроскопических до гигантских размеров. Мы расскажем вам о фантастических сухопутных и морских существах, которые не имеют аналогов в современной природе: первые трилобиты, гигантские акулы, огромные морские рептилии и пернатые динозавры, первые птицы, ходячие киты, гигантские безрогие носороги и австралопитек «Люси».


Возможен ли вечный двигатель?

К созданию невозможного вечного двигателя одни изобретатели приступали, игнорируя законы природы, другие же, не зная их, действовали на авось. В наше время, в эпоху расцвета науки и техники, едва ли есть серьёзные изобретатели, которых увлекала бы бесплодная в своей основе идея создания вечного двигателя.


Страх физики. Сферический конь в вакууме

Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.


Одиноки ли мы во Вселенной? Ведущие ученые мира о поисках инопланетной жизни

Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино.


Золотая Орда. Монголы на Руси. 1223–1502

Книга немецкого историка, востоковеда, тюрколога, специалиста по истории монголов Бертольда Шпулера посвящена истории и культуре Золотой Орды. Опираясь на широкий круг источников и литературы, автор исследует широкий спектр вопросов: помимо политической истории он рассматривает религиозные отношения, государственный строй, право, военное дело, экономику, искусство, питание и одежду.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.